Pd-bound functionalized mesoporous silica as active catalyst for Suzuki coupling reaction: Effect of OAcˉ, PPh3 and Clˉ ligands on catalytic activity

Pd-bound functionalized mesoporous silica as active catalyst for Suzuki coupling reaction: Effect... Three new palladium catalysts, PdCat-I, PdCat-II and PdCat-III, immobilized over heterogeneous silica support have been synthesized using different ligands attached to the palladium precursor. The ligands that have been used in this study are acetate, triphenylphosphine and chloride in PdCat-I, PdCat-II and PdCat-III, respectively. The ligands have different effect on stability of the compounds and impart different oxidation states to the metal center. The materials have been characterized by powder X-ray diffraction, nitrogen adsorption-desorption studies, transmission electron microscopy, thermal analysis, and different spectroscopic techniques. The Pd-content of the samples have been determined by ICP-AES analysis. The materials have been used as catalysts for Suzuki coupling reaction of aryl halides with phenylboronic acid under mild conditions. A comparative study has been carried out to ascertain the effect of the nature of different ligands on the outcome of the catalytic reactions. Products have been identified and estimated by 1H NMR and gas chromatography. The results show that the best yields are obtained with the catalyst containing triphenylphosphine as the ligand in methanol. Such type of work to study the effect of ligand on Suzuki coupling reaction over functionalized mesoporous silica heterogeneous catalysts have not been carried out so far. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Pd-bound functionalized mesoporous silica as active catalyst for Suzuki coupling reaction: Effect of OAcˉ, PPh3 and Clˉ ligands on catalytic activity

Loading next page...
 
/lp/elsevier/pd-bound-functionalized-mesoporous-silica-as-active-catalyst-for-1F1PcdXQHS
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.01.027
Publisher site
See Article on Publisher Site

Abstract

Three new palladium catalysts, PdCat-I, PdCat-II and PdCat-III, immobilized over heterogeneous silica support have been synthesized using different ligands attached to the palladium precursor. The ligands that have been used in this study are acetate, triphenylphosphine and chloride in PdCat-I, PdCat-II and PdCat-III, respectively. The ligands have different effect on stability of the compounds and impart different oxidation states to the metal center. The materials have been characterized by powder X-ray diffraction, nitrogen adsorption-desorption studies, transmission electron microscopy, thermal analysis, and different spectroscopic techniques. The Pd-content of the samples have been determined by ICP-AES analysis. The materials have been used as catalysts for Suzuki coupling reaction of aryl halides with phenylboronic acid under mild conditions. A comparative study has been carried out to ascertain the effect of the nature of different ligands on the outcome of the catalytic reactions. Products have been identified and estimated by 1H NMR and gas chromatography. The results show that the best yields are obtained with the catalyst containing triphenylphosphine as the ligand in methanol. Such type of work to study the effect of ligand on Suzuki coupling reaction over functionalized mesoporous silica heterogeneous catalysts have not been carried out so far.

Journal

Journal of Solid State ChemistryElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off