Parameter uncertainties in the modelling of vegetation dynamics—Effects on tree community structure and ecosystem functioning in European forest biomes

Parameter uncertainties in the modelling of vegetation dynamics—Effects on tree community... Dynamic vegetation models are useful tools for analysing terrestrial ecosystem processes and their interactions with climate through variations in carbon and water exchange. Long-term changes in structure and composition (vegetation dynamics) caused by altered competitive strength between plant functional types (PFTs) are attracting increasing attention as controls on ecosystem functioning and potential feedbacks to climate. Imperfect process knowledge and limited observational data restrict the possibility to parameterise these processes adequately and potentially contribute to uncertainty in model results. This study addresses uncertainty among parameters scaling vegetation dynamic processes in a process-based ecosystem model, LPJ-GUESS, designed for regional-scale studies, with the objective to assess the extent to which this uncertainty propagates to additional uncertainty in the tree community structure (in terms of the tree functional types present and their relative abundance) and thus to ecosystem functioning (carbon storage and fluxes). The results clearly indicate that the uncertainties in parameterisation can lead to a shift in competitive balance, most strikingly among deciduous tree PFTs, with dominance of either shade-tolerant or shade-intolerant PFTs being possible, depending on the choice of plausible parameter values. Despite this uncertainty, our results indicate that the resulting effect on ecosystem functioning is low. Since the vegetation dynamics in LPJ-GUESS are representative for the more complex Earth system models now being applied within ecosystem and climate research, we assume that our findings will be of general relevance. We suggest that, in terms of carbon storage and fluxes, the heavier parameterisation requirement of the processes involved does not widen the overall uncertainty in model predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

Parameter uncertainties in the modelling of vegetation dynamics—Effects on tree community structure and ecosystem functioning in European forest biomes

Loading next page...
 
/lp/elsevier/parameter-uncertainties-in-the-modelling-of-vegetation-dynamics-wHmIjFuBQx
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier B.V.
ISSN
0304-3800
eISSN
1872-7026
D.O.I.
10.1016/j.ecolmodel.2008.04.013
Publisher site
See Article on Publisher Site

Abstract

Dynamic vegetation models are useful tools for analysing terrestrial ecosystem processes and their interactions with climate through variations in carbon and water exchange. Long-term changes in structure and composition (vegetation dynamics) caused by altered competitive strength between plant functional types (PFTs) are attracting increasing attention as controls on ecosystem functioning and potential feedbacks to climate. Imperfect process knowledge and limited observational data restrict the possibility to parameterise these processes adequately and potentially contribute to uncertainty in model results. This study addresses uncertainty among parameters scaling vegetation dynamic processes in a process-based ecosystem model, LPJ-GUESS, designed for regional-scale studies, with the objective to assess the extent to which this uncertainty propagates to additional uncertainty in the tree community structure (in terms of the tree functional types present and their relative abundance) and thus to ecosystem functioning (carbon storage and fluxes). The results clearly indicate that the uncertainties in parameterisation can lead to a shift in competitive balance, most strikingly among deciduous tree PFTs, with dominance of either shade-tolerant or shade-intolerant PFTs being possible, depending on the choice of plausible parameter values. Despite this uncertainty, our results indicate that the resulting effect on ecosystem functioning is low. Since the vegetation dynamics in LPJ-GUESS are representative for the more complex Earth system models now being applied within ecosystem and climate research, we assume that our findings will be of general relevance. We suggest that, in terms of carbon storage and fluxes, the heavier parameterisation requirement of the processes involved does not widen the overall uncertainty in model predictions.

Journal

Ecological ModellingElsevier

Published: Sep 10, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off