Palladium and platinum based solid and hollow nanoparticles: An ab-initio study of structural and electronic properties

Palladium and platinum based solid and hollow nanoparticles: An ab-initio study of structural and... Nanoparticles composed of palladium and platinum are particularly interesting for catalytic purposes, for instance, selective hydrogenation and alcohol oxidation. The reactivity and selectivity of nanostructures are mostly based on the size and shape of the nanocrystals in catalytic reactions. In this work, we studied the structural stabilities of Pd and Pt based nanocubes and nanocages and adsorption strength of chemisorbed species on these nanostructures to investigate their structure dependent catalytic activities. Solid cubic and hollow cage like nanostructures of different sizes were designed with Pd and Pt atoms. The volume of the crystal cavity in nanocage structures was tuned by removing of atoms from solid cubic structure. The effect of size and shape on the formation energies and HOMO-LUMO energy gap of nanostructures were elucidated and correlated to structural stabilities, hardness-softness, electronegativity and electrophilicity index. The relationship between size and chemical reactivity clearly showed that increasing the number of atoms participating in a catalyst enhances the activity. For further understanding of the catalytic activity we employed 4-nitro thiophenol, as an S-donor representative molecule, to evaluate the adsorption characteristics of the nanostructures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Palladium and platinum based solid and hollow nanoparticles: An ab-initio study of structural and electronic properties

Loading next page...
 
/lp/elsevier/palladium-and-platinum-based-solid-and-hollow-nanoparticles-an-ab-Gc6xFTb9lK
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.01.020
Publisher site
See Article on Publisher Site

Abstract

Nanoparticles composed of palladium and platinum are particularly interesting for catalytic purposes, for instance, selective hydrogenation and alcohol oxidation. The reactivity and selectivity of nanostructures are mostly based on the size and shape of the nanocrystals in catalytic reactions. In this work, we studied the structural stabilities of Pd and Pt based nanocubes and nanocages and adsorption strength of chemisorbed species on these nanostructures to investigate their structure dependent catalytic activities. Solid cubic and hollow cage like nanostructures of different sizes were designed with Pd and Pt atoms. The volume of the crystal cavity in nanocage structures was tuned by removing of atoms from solid cubic structure. The effect of size and shape on the formation energies and HOMO-LUMO energy gap of nanostructures were elucidated and correlated to structural stabilities, hardness-softness, electronegativity and electrophilicity index. The relationship between size and chemical reactivity clearly showed that increasing the number of atoms participating in a catalyst enhances the activity. For further understanding of the catalytic activity we employed 4-nitro thiophenol, as an S-donor representative molecule, to evaluate the adsorption characteristics of the nanostructures.

Journal

Journal of Solid State ChemistryElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off