Ozone reaction with human surfaces: Influences of surface reaction probability and indoor air flow condition

Ozone reaction with human surfaces: Influences of surface reaction probability and indoor air... It is well-established that indoor surfaces, such as building materials, act as a sink for indoor ozone. However, comparatively little research has been done regarding ozone reactions with human surfaces such as skin and clothing. Reaction characteristics of human surfaces and airflow around the human body may affect ozone removal and reaction byproduct formation. The objective of this study is to investigate effects of the reactivity of human surfaces, modeled for a range of reaction probabilities (γ), on ozone deposition and reaction byproduct formation. Computational fluid dynamics models are verified and validated with previously published studies, and used to analyze ozone reaction dynamics due to human surfaces under varying indoor air flow conditions. The results show that for indoor environments with air exchange rate <5 h−1, ozone deposition velocity is in the range of 8–10 m/h for human skin oil while it is 2–3 m/h for clean clothing. Surface reactivity of the human body has a larger influence on the ozone deposition velocity than do the air exchange rates or indoor airflow patterns. Modeled emission rates of major reaction byproducts from ozone chemistry with human surfaces included acetone (0.3 mg/h/person), decanal (0.2 mg/h/person), nonanal (0.1 mg/h/person) and 6-MHO (0.1 mg/h/person) for a transport-limited scenario with 90 ppb bulk ozone concentration. These results imply that exposures to indoor ozone and reaction byproducts can be meaningfully modulated by an interaction of building airflow and chemistry occurring on and around individuals, and should be considered in models of human exposure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Ozone reaction with human surfaces: Influences of surface reaction probability and indoor air flow condition

Loading next page...
 
/lp/elsevier/ozone-reaction-with-human-surfaces-influences-of-surface-reaction-udsGputYDU
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2017.12.012
Publisher site
See Article on Publisher Site

Abstract

It is well-established that indoor surfaces, such as building materials, act as a sink for indoor ozone. However, comparatively little research has been done regarding ozone reactions with human surfaces such as skin and clothing. Reaction characteristics of human surfaces and airflow around the human body may affect ozone removal and reaction byproduct formation. The objective of this study is to investigate effects of the reactivity of human surfaces, modeled for a range of reaction probabilities (γ), on ozone deposition and reaction byproduct formation. Computational fluid dynamics models are verified and validated with previously published studies, and used to analyze ozone reaction dynamics due to human surfaces under varying indoor air flow conditions. The results show that for indoor environments with air exchange rate <5 h−1, ozone deposition velocity is in the range of 8–10 m/h for human skin oil while it is 2–3 m/h for clean clothing. Surface reactivity of the human body has a larger influence on the ozone deposition velocity than do the air exchange rates or indoor airflow patterns. Modeled emission rates of major reaction byproducts from ozone chemistry with human surfaces included acetone (0.3 mg/h/person), decanal (0.2 mg/h/person), nonanal (0.1 mg/h/person) and 6-MHO (0.1 mg/h/person) for a transport-limited scenario with 90 ppb bulk ozone concentration. These results imply that exposures to indoor ozone and reaction byproducts can be meaningfully modulated by an interaction of building airflow and chemistry occurring on and around individuals, and should be considered in models of human exposure.

Journal

Building and EnvironmentElsevier

Published: Feb 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off