Oxygen transport properties of Ca-doped Pr2NiO4

Oxygen transport properties of Ca-doped Pr2NiO4 Praseodymium nickelate Pr2NiO4+δ with layered Ruddlesden–Popper (R–P) structure is a promising material for the ceramic membranes for oxygen separation and for SOFC cathodes due to its mixed ionic-electronic conducting nature and high oxygen mobility and surface reactivity. However, a low thermal stability and the inadequate electronic conductivity of Pr2NiO4+δ require its doping for a more efficient performance. This work presents results of study of the effect of Ca doping on the structural and transport properties of Pr2NiO4. Pr2−xCaxNiO4 oxides (x = 0–0.6) were synthesized by a co-precipitation method and characterized by XRD, XPS and TEM methods. The oxygen content in these materials and its variation with increasing temperature was evaluated using TGA. The oxygen transport properties of powdered samples were studied by the temperature-programmed oxygen isotope heteroexchange with C18O2 (TPIE). Electrical conductivity of compact samples was measured by a dc four-probe technique. Electrochemical measurements were performed using an impedance spectroscopy method with symmetrically arranged electrodes on the Ce0.8Sm0.2O1.9 electrolyte. It was shown that doping resulted in enhanced electrical conductivity and at a low Ca content the electrochemical activity of electrodes increased while the interstitial oxygen content and oxygen diffusivity gradually decreased. For x > 0.3 increasing the lattice anisotropy resulted in the co-existence of 2–3 channels of oxygen diffusion revealed as separate peaks in TPIE curves. The fast diffusion channel (D⁎ ~ 10−8 cm2/s at 700 °C), with a share in the total diffusion drastically decreasing at big doping levels, corresponds to the fast interstitial oxygen diffusion via the cooperative mechanism while the slow channels (D⁎ < 10−10 cm2/s) are probably related to the oxygen transport in perovskite layers and the complicated transport involving interlayer positions near the dopant cation sites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Solid State Ionics Elsevier

Loading next page...
 
/lp/elsevier/oxygen-transport-properties-of-ca-doped-pr2nio4-lkDwiZ6Qak
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0167-2738
eISSN
1872-7689
D.O.I.
10.1016/j.ssi.2018.01.035
Publisher site
See Article on Publisher Site

Abstract

Praseodymium nickelate Pr2NiO4+δ with layered Ruddlesden–Popper (R–P) structure is a promising material for the ceramic membranes for oxygen separation and for SOFC cathodes due to its mixed ionic-electronic conducting nature and high oxygen mobility and surface reactivity. However, a low thermal stability and the inadequate electronic conductivity of Pr2NiO4+δ require its doping for a more efficient performance. This work presents results of study of the effect of Ca doping on the structural and transport properties of Pr2NiO4. Pr2−xCaxNiO4 oxides (x = 0–0.6) were synthesized by a co-precipitation method and characterized by XRD, XPS and TEM methods. The oxygen content in these materials and its variation with increasing temperature was evaluated using TGA. The oxygen transport properties of powdered samples were studied by the temperature-programmed oxygen isotope heteroexchange with C18O2 (TPIE). Electrical conductivity of compact samples was measured by a dc four-probe technique. Electrochemical measurements were performed using an impedance spectroscopy method with symmetrically arranged electrodes on the Ce0.8Sm0.2O1.9 electrolyte. It was shown that doping resulted in enhanced electrical conductivity and at a low Ca content the electrochemical activity of electrodes increased while the interstitial oxygen content and oxygen diffusivity gradually decreased. For x > 0.3 increasing the lattice anisotropy resulted in the co-existence of 2–3 channels of oxygen diffusion revealed as separate peaks in TPIE curves. The fast diffusion channel (D⁎ ~ 10−8 cm2/s at 700 °C), with a share in the total diffusion drastically decreasing at big doping levels, corresponds to the fast interstitial oxygen diffusion via the cooperative mechanism while the slow channels (D⁎ < 10−10 cm2/s) are probably related to the oxygen transport in perovskite layers and the complicated transport involving interlayer positions near the dopant cation sites.

Journal

Solid State IonicsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off