Oxide composite of La0.3Sr0.7Ti0.3Fe0.7O3-δ and CeO2 as an active fuel electrode for reversible solid oxide cells

Oxide composite of La0.3Sr0.7Ti0.3Fe0.7O3-δ and CeO2 as an active fuel electrode for reversible... In this paper, La0.3Sr0.7Ti0.3Fe0.7O3-δ (LSTF0.7) composite with CeO2 is successfully prepared by infiltration method as a thin porous electrode and examined in detail as a fuel electrode for efficient reversible solid oxide cells (RSOCs) at different ratios of CO/CO2 at the temperatures of 700–850 °C. XRD analysis indicates that the cubic perovskite LSTF0.7 is stable in CO or CO2 at high temperature and compatible with CeO2 and scandia-stabilized zirconia (ScSZ) electrolyte. In electrolysis mode, the current density of 3.56 A cm−2 is obtained from the I–V curve at 2.0 V in 50% CO+ 50% CO2 at the temperature of 850 °C. The polarization resistance (Rp) of the whole cell at 800 °C is 0.28 Ω cm2 when 1.4 V is applied in the same gas composition. The corresponding activation energy of the fuel electrode under open circuit is calculated to be 81.37 kJ mol−1. In fuel cell mode, the maximal power density of 437 mW cm−2 is obtained at 800 °C in 70% CO+ 30% CO2 as well. The reversible operation at 800 °C indicates that a slow degradation phenomenon in both SOFC and SOEC modes is observed, due to the particle agglomeration of the infiltrated fuel electrode. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Oxide composite of La0.3Sr0.7Ti0.3Fe0.7O3-δ and CeO2 as an active fuel electrode for reversible solid oxide cells

Loading next page...
 
/lp/elsevier/oxide-composite-of-la0-3sr0-7ti0-3fe0-7o3-and-ceo2-as-an-active-fuel-ABhjl8xMYj
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2017.10.016
Publisher site
See Article on Publisher Site

Abstract

In this paper, La0.3Sr0.7Ti0.3Fe0.7O3-δ (LSTF0.7) composite with CeO2 is successfully prepared by infiltration method as a thin porous electrode and examined in detail as a fuel electrode for efficient reversible solid oxide cells (RSOCs) at different ratios of CO/CO2 at the temperatures of 700–850 °C. XRD analysis indicates that the cubic perovskite LSTF0.7 is stable in CO or CO2 at high temperature and compatible with CeO2 and scandia-stabilized zirconia (ScSZ) electrolyte. In electrolysis mode, the current density of 3.56 A cm−2 is obtained from the I–V curve at 2.0 V in 50% CO+ 50% CO2 at the temperature of 850 °C. The polarization resistance (Rp) of the whole cell at 800 °C is 0.28 Ω cm2 when 1.4 V is applied in the same gas composition. The corresponding activation energy of the fuel electrode under open circuit is calculated to be 81.37 kJ mol−1. In fuel cell mode, the maximal power density of 437 mW cm−2 is obtained at 800 °C in 70% CO+ 30% CO2 as well. The reversible operation at 800 °C indicates that a slow degradation phenomenon in both SOFC and SOEC modes is observed, due to the particle agglomeration of the infiltrated fuel electrode.

Journal

Journal of Power SourcesElsevier

Published: Dec 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off