Oxidative damage in the central nervous system: protection by melatonin

Oxidative damage in the central nervous system: protection by melatonin Melatonin was recently reported to be an effective free radical scavenger and antioxidant. Melatonin is believed to scavenge the highly toxic hydroxyl radical, the peroxynitrite anion, and possibly the peroxyl radical. Also, secondarily, it reportedly scavenges the superoxide anion radical and it quenches singlet oxygen. Additionally, it stimulates mRNA levels for superoxide dismutase and the activities of glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (all of which are antioxidative enzymes), thereby increasing its antioxidative capacity. Also, melatonin, at least at some sites, inhibits nitric oxide synthase, a pro-oxidative enzyme. In both in vivo and in vitro experiments melatonin has been shown to reduce lipid peroxidation and oxidative damage to nuclear DNA. While these effects have been observed primarily using pharmacological doses of melatonin, in a small number of experiments melatonin has been found to be physiologically relevant as an antioxidant as well. The efficacy of melatonin in inhibiting oxidative damage has been tested in a variety of neurological disease models where free radicals have been implicated as being in part causative of the condition. Thus, melatonin has been shown prophylactically to reduce amyloid β protein toxicity of Alzheimer's disease, to reduce oxidative damage in several models of Parkinson's disease (dopamine auto-oxidation, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine), to protect against glutamate excitotoxicity, to reduce ischemia-reperfusion injury, to lower neural damage due to δ -aminolevulinic acid (phorphyria), hyperbaric hyperoxia and a variety of neural toxins. Since endogenous melatonin levels fal l markedly in advanced age, the implication of these findings is that the loss of this antioxidant may contribute to the incidence or severity of some age-associated neurodegenerative diseases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Progress in Neurobiology Elsevier

Oxidative damage in the central nervous system: protection by melatonin

Progress in Neurobiology, Volume 56 (3) – Oct 1, 1998

Loading next page...
 
/lp/elsevier/oxidative-damage-in-the-central-nervous-system-protection-by-melatonin-WDpVA8kNqO
Publisher
Elsevier
Copyright
Copyright © 1998 Elsevier Science Ltd
ISSN
0301-0082
DOI
10.1016/S0301-0082(98)00052-5
Publisher site
See Article on Publisher Site

Abstract

Melatonin was recently reported to be an effective free radical scavenger and antioxidant. Melatonin is believed to scavenge the highly toxic hydroxyl radical, the peroxynitrite anion, and possibly the peroxyl radical. Also, secondarily, it reportedly scavenges the superoxide anion radical and it quenches singlet oxygen. Additionally, it stimulates mRNA levels for superoxide dismutase and the activities of glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (all of which are antioxidative enzymes), thereby increasing its antioxidative capacity. Also, melatonin, at least at some sites, inhibits nitric oxide synthase, a pro-oxidative enzyme. In both in vivo and in vitro experiments melatonin has been shown to reduce lipid peroxidation and oxidative damage to nuclear DNA. While these effects have been observed primarily using pharmacological doses of melatonin, in a small number of experiments melatonin has been found to be physiologically relevant as an antioxidant as well. The efficacy of melatonin in inhibiting oxidative damage has been tested in a variety of neurological disease models where free radicals have been implicated as being in part causative of the condition. Thus, melatonin has been shown prophylactically to reduce amyloid β protein toxicity of Alzheimer's disease, to reduce oxidative damage in several models of Parkinson's disease (dopamine auto-oxidation, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine), to protect against glutamate excitotoxicity, to reduce ischemia-reperfusion injury, to lower neural damage due to δ -aminolevulinic acid (phorphyria), hyperbaric hyperoxia and a variety of neural toxins. Since endogenous melatonin levels fal l markedly in advanced age, the implication of these findings is that the loss of this antioxidant may contribute to the incidence or severity of some age-associated neurodegenerative diseases.

Journal

Progress in NeurobiologyElsevier

Published: Oct 1, 1998

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off