Overexpression of Nmnat improves the adaption of health span in aging Drosophila

Overexpression of Nmnat improves the adaption of health span in aging Drosophila Nmnat is a stress response protein which has been involved in a variety of biological processes. However, the effects of Nmnat on aging have not yet been investigated. The present study revealed the effects of Nmnat on aging of Drosophila and uncovered its underlying mechanism. Therefore, the overexpression of Nmnat was established by arm/Gal4 system in Drosophila with an aim to determine the functions of Nmnat during aging process. In this study, our results showed Nmnat was a positive factor on lifespan and movement capacity, which was consistent on d-galactose induced aging acceleration. Further investigation showed that oxidative stress biomarkers, longevity gene, mitochondria related genes and ATP levels were significantly improved in the Nmnat overexpression Drosophila, which suggested that the underlying mechanism of Nmnat on aging process and movement capacity was partly due to its anti-oxidative stress and mitochondrial-protection function. In addition, on H2O2 challenge tests, Nmnat overexpression was sufficient to increase the survival time and movement capacity of Drosophila, which was probably due to its protection against oxidative stress. On rotenone induced mitochondrial dysfunction, Nmnat overexpression also showed better health span and movement capacity than the control group. Based on these data, Nmnat may be a new molecular target to improve health span by enhancing stress resistance and locomotor activity in aging process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Gerontology Elsevier

Overexpression of Nmnat improves the adaption of health span in aging Drosophila

Loading next page...
 
/lp/elsevier/overexpression-of-nmnat-improves-the-adaption-of-health-span-in-aging-scGd0eCilX
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0531-5565
eISSN
1873-6815
D.O.I.
10.1016/j.exger.2018.04.026
Publisher site
See Article on Publisher Site

Abstract

Nmnat is a stress response protein which has been involved in a variety of biological processes. However, the effects of Nmnat on aging have not yet been investigated. The present study revealed the effects of Nmnat on aging of Drosophila and uncovered its underlying mechanism. Therefore, the overexpression of Nmnat was established by arm/Gal4 system in Drosophila with an aim to determine the functions of Nmnat during aging process. In this study, our results showed Nmnat was a positive factor on lifespan and movement capacity, which was consistent on d-galactose induced aging acceleration. Further investigation showed that oxidative stress biomarkers, longevity gene, mitochondria related genes and ATP levels were significantly improved in the Nmnat overexpression Drosophila, which suggested that the underlying mechanism of Nmnat on aging process and movement capacity was partly due to its anti-oxidative stress and mitochondrial-protection function. In addition, on H2O2 challenge tests, Nmnat overexpression was sufficient to increase the survival time and movement capacity of Drosophila, which was probably due to its protection against oxidative stress. On rotenone induced mitochondrial dysfunction, Nmnat overexpression also showed better health span and movement capacity than the control group. Based on these data, Nmnat may be a new molecular target to improve health span by enhancing stress resistance and locomotor activity in aging process.

Journal

Experimental GerontologyElsevier

Published: Jul 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off