Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure

Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe... Numerous composite structures with excellent integrative performance that can replicate the mechanical properties of biological materials have been created to fill gaps in material-property charts, and these bio-inspired structures have crucial implications in a wide range of engineering communities. In this paper, a series of novel bio-inspired aluminum honeycombs consisting of horseshoe mesostructure have been proposed on the basis of triangular honeycomb, square honeycomb, hexagonal honeycomb and kagome honeycomb to improve the energy absorption capacity. The three-dimensional finite element models of the bio-inspired horseshoe-shaped aluminum honeycombs are developed in order to explore the mechanical behaviors under the out-of-plane uniform compression. The simulation results are validated based on the compression experiments of regular hexagonal honeycombs. Besides, parametric investigations are carried out to understand the influences of the wave amplitude, wave number and cell-wall thickness on the out-of-plane crashworthiness. The numerical results demonstrate that adding the horseshoe mesostructure to the regular honeycombs can increase the plateau force greatly compared with the traditional honeycomb structure, leading to the higher specific energy absorption although increasing the initial peak force as well. Finally, a multi-objective optimization is carried out to seek for the optimal honeycombs with the maximum specific energy absorption together with the minimum initial peak force simultaneously. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Thin-Walled Structures Elsevier

Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure

Loading next page...
 
/lp/elsevier/out-of-plane-crashworthiness-analysis-of-bio-inspired-aluminum-5XgdXefRZf
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8231
eISSN
1879-3223
D.O.I.
10.1016/j.tws.2018.01.014
Publisher site
See Article on Publisher Site

Abstract

Numerous composite structures with excellent integrative performance that can replicate the mechanical properties of biological materials have been created to fill gaps in material-property charts, and these bio-inspired structures have crucial implications in a wide range of engineering communities. In this paper, a series of novel bio-inspired aluminum honeycombs consisting of horseshoe mesostructure have been proposed on the basis of triangular honeycomb, square honeycomb, hexagonal honeycomb and kagome honeycomb to improve the energy absorption capacity. The three-dimensional finite element models of the bio-inspired horseshoe-shaped aluminum honeycombs are developed in order to explore the mechanical behaviors under the out-of-plane uniform compression. The simulation results are validated based on the compression experiments of regular hexagonal honeycombs. Besides, parametric investigations are carried out to understand the influences of the wave amplitude, wave number and cell-wall thickness on the out-of-plane crashworthiness. The numerical results demonstrate that adding the horseshoe mesostructure to the regular honeycombs can increase the plateau force greatly compared with the traditional honeycomb structure, leading to the higher specific energy absorption although increasing the initial peak force as well. Finally, a multi-objective optimization is carried out to seek for the optimal honeycombs with the maximum specific energy absorption together with the minimum initial peak force simultaneously.

Journal

Thin-Walled StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off