Orogen-parallel variation in exhumation and its influence on critical taper evolution: The case of the Emilia-Romagna Apennine (Italy)

Orogen-parallel variation in exhumation and its influence on critical taper evolution: The case... The Northern Apennine prowedge exposes two adjacent sectors showing a marked along-strike change in erosion intensity, namely the Emilia Apennine to the northwest and the Romagna Apennine to the southeast. This setting has resulted from Pliocene erosion (≤5 Ma) and exhumation, which have affected the whole Romagna sector and mostly the watershed ridge in Emilia. Such an evolution has conceivably influenced the equilibrium of this fold-and-thrust belt, which can be evaluated in terms of critical Coulomb wedge theory. The present state of the thrust wedge has been assessed by crosschecking wedge tapers measured along transverse profiles with fluid pressure values inferred from deep wellbores. The interpretation of available data suggests that both Emilia and Romagna are currently overcritical. This condition is compatible with the presence in both sectors of active NE-dipping normal faults, which would work to decrease the surface slope of the orogenic wedge. However, the presence of Late Miocene-Pliocene passive-roof and out-of-sequence thrusts in Romagna may reveal a past undercritical wedge state ensuing during the regional erosion phase, thereby implying that the current overcritical condition would be a recent feature. The setting of the Emilia Apennine (i.e., strong axial exhumation and limited erosion of the prowedge) suggests instead a long lasting overcritical wedge, which was probably contemporaneous with the Pliocene undercritical wedge in Romagna. The reasons for this evolution are still unclear, although they may be linked to lithosphere-scale processes that have promoted the uplift of Romagna relative to Emilia. The lessons from the Northern Apennine thus suggest that erosion and exhumation have the ability to produce marked along-strike changes in the equilibrium of a fold-and-thrust belt. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tectonophysics Elsevier

Orogen-parallel variation in exhumation and its influence on critical taper evolution: The case of the Emilia-Romagna Apennine (Italy)

Loading next page...
 
/lp/elsevier/orogen-parallel-variation-in-exhumation-and-its-influence-on-critical-p0Tq7qjEkT
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0040-1951
eISSN
1879-3266
D.O.I.
10.1016/j.tecto.2018.01.029
Publisher site
See Article on Publisher Site

Abstract

The Northern Apennine prowedge exposes two adjacent sectors showing a marked along-strike change in erosion intensity, namely the Emilia Apennine to the northwest and the Romagna Apennine to the southeast. This setting has resulted from Pliocene erosion (≤5 Ma) and exhumation, which have affected the whole Romagna sector and mostly the watershed ridge in Emilia. Such an evolution has conceivably influenced the equilibrium of this fold-and-thrust belt, which can be evaluated in terms of critical Coulomb wedge theory. The present state of the thrust wedge has been assessed by crosschecking wedge tapers measured along transverse profiles with fluid pressure values inferred from deep wellbores. The interpretation of available data suggests that both Emilia and Romagna are currently overcritical. This condition is compatible with the presence in both sectors of active NE-dipping normal faults, which would work to decrease the surface slope of the orogenic wedge. However, the presence of Late Miocene-Pliocene passive-roof and out-of-sequence thrusts in Romagna may reveal a past undercritical wedge state ensuing during the regional erosion phase, thereby implying that the current overcritical condition would be a recent feature. The setting of the Emilia Apennine (i.e., strong axial exhumation and limited erosion of the prowedge) suggests instead a long lasting overcritical wedge, which was probably contemporaneous with the Pliocene undercritical wedge in Romagna. The reasons for this evolution are still unclear, although they may be linked to lithosphere-scale processes that have promoted the uplift of Romagna relative to Emilia. The lessons from the Northern Apennine thus suggest that erosion and exhumation have the ability to produce marked along-strike changes in the equilibrium of a fold-and-thrust belt.

Journal

TectonophysicsElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial