Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process

Organic contaminants degradation from the S(IV) autoxidation process catalyzed by... Remarkable atrazine degradation in the S(IV) autoxidation process catalyzed by Fe2+-Mn2+ (Fe2+/Mn2+/sulfite) was demonstrated in this study. Competitive kinetic experiments, alcohol inhibiting methods and electron spin resonance (ESR) experiments proved that sulfur radicals were not the major oxidation species. Mn(III) was demonstrated to be the primary active species in the Fe2+/Mn2+/sulfite process based on the comparison of oxidation selectivity. Moreover, the inhibiting effect of the Mn(III) hydrolysis and the S(IV) autoxidation in the presence of organic contaminants indicated the existence of three Mn(III) consumption routes in the Fe2+/Mn2+/sulfite process. The absence of hydroxyl radical and sulfate radical was interpreted by the competitive dynamics method. The oxidation capacity of the Fe2+/Mn2+/sulfite was independent of the initial pH (4.0–6.0) because the fast decay of S(IV) decreased initial pH below 4.0 rapidly. The rate of ATZ degradation was independent of the dissolved oxygen (DO) because that the major DO consumption process was not the rate determining step during the production of SO5•-. Phosphate and bicarbonate were confirmed to have greater inhibitory effects than other environmental factors because of their strong pH buffering capacity and complexing capacity for Fe3+. The proposed acetylation degradation pathway of ATZ showed the application of the Fe2+/Mn2+/sulfite process in the research of contaminants degradation pathways. This work investigated the characteristics of the Fe2+/Mn2+/sulfite process in the presence of organic contaminants, which might promote the development of Mn(III) oxidation technology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process

Loading next page...
 
/lp/elsevier/organic-contaminants-degradation-from-the-s-iv-autoxidation-process-w1CCgBV0NA
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.01.039
Publisher site
See Article on Publisher Site

Abstract

Remarkable atrazine degradation in the S(IV) autoxidation process catalyzed by Fe2+-Mn2+ (Fe2+/Mn2+/sulfite) was demonstrated in this study. Competitive kinetic experiments, alcohol inhibiting methods and electron spin resonance (ESR) experiments proved that sulfur radicals were not the major oxidation species. Mn(III) was demonstrated to be the primary active species in the Fe2+/Mn2+/sulfite process based on the comparison of oxidation selectivity. Moreover, the inhibiting effect of the Mn(III) hydrolysis and the S(IV) autoxidation in the presence of organic contaminants indicated the existence of three Mn(III) consumption routes in the Fe2+/Mn2+/sulfite process. The absence of hydroxyl radical and sulfate radical was interpreted by the competitive dynamics method. The oxidation capacity of the Fe2+/Mn2+/sulfite was independent of the initial pH (4.0–6.0) because the fast decay of S(IV) decreased initial pH below 4.0 rapidly. The rate of ATZ degradation was independent of the dissolved oxygen (DO) because that the major DO consumption process was not the rate determining step during the production of SO5•-. Phosphate and bicarbonate were confirmed to have greater inhibitory effects than other environmental factors because of their strong pH buffering capacity and complexing capacity for Fe3+. The proposed acetylation degradation pathway of ATZ showed the application of the Fe2+/Mn2+/sulfite process in the research of contaminants degradation pathways. This work investigated the characteristics of the Fe2+/Mn2+/sulfite process in the presence of organic contaminants, which might promote the development of Mn(III) oxidation technology.

Journal

Water ResearchElsevier

Published: Apr 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off