Orexin-B modulates synaptic transmission of rod bipolar cells in rat retina

Orexin-B modulates synaptic transmission of rod bipolar cells in rat retina Orexin-A, -B play a crucial role in arousal and feeding by activating two G-protein-coupled receptors: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). Orexins, along with orexin receptors, are expressed in retinal neurons, and they have been shown to differentially modulate excitatory AMPA receptors of amacrine and ganglion cells in the inner retina. In this work we report that orexin-B modulates the activity of rod bipolar cells (RBCs) located in the outer retina of rat. Intravitreal injection of orexin-B increased the amplitude of the scotopic electroretinographic b-wave, a reflection of RBC activity, recorded in vivo. Patch clamp recordings in rat retinal slices showed that orexin-B did not change glutamatergic excitatory component of the RBC response driven by photoreceptors. Effects of orexin-B on GABA receptor-mediated synaptic transmission of RBCs were then examined. In retinal slice preparations orexin-B suppressed GABA receptor-mediated inhibitory postsynaptic currents of RBCs in the inner plexiform layer. Furthermore, using whole-cell recordings in isolated RBCs it was shown that orexin-B suppressed GABAC receptor-, but not GABAA receptor-, mediated currents of the RBCs, an effect that was blocked by OX1R and OX2R antagonists. The orexin-B-induced inhibition of GABAC currents was likely mediated by a Gi/o/PC-PLC/Ca2+-independent PKC signaling pathway, as such inhibition was absent when each step of the above-pathway was blocked with GDP-β-S/pertussis toxin (for Gi/o), D609 (for PLC), bisindolylmaleimide IV (for PKC)/rottlerin (for PKCδ), respectively. The orexin-B-induced potentiation of RBC activity may improve visual acuity and contrast sensitivity of the animal during the dark period (wake phase). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuropharmacology Elsevier

Orexin-B modulates synaptic transmission of rod bipolar cells in rat retina

Loading next page...
 
/lp/elsevier/orexin-b-modulates-synaptic-transmission-of-rod-bipolar-cells-in-rat-N0CwpSgL2Y
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0028-3908
eISSN
1873-7064
D.O.I.
10.1016/j.neuropharm.2018.01.007
Publisher site
See Article on Publisher Site

Abstract

Orexin-A, -B play a crucial role in arousal and feeding by activating two G-protein-coupled receptors: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). Orexins, along with orexin receptors, are expressed in retinal neurons, and they have been shown to differentially modulate excitatory AMPA receptors of amacrine and ganglion cells in the inner retina. In this work we report that orexin-B modulates the activity of rod bipolar cells (RBCs) located in the outer retina of rat. Intravitreal injection of orexin-B increased the amplitude of the scotopic electroretinographic b-wave, a reflection of RBC activity, recorded in vivo. Patch clamp recordings in rat retinal slices showed that orexin-B did not change glutamatergic excitatory component of the RBC response driven by photoreceptors. Effects of orexin-B on GABA receptor-mediated synaptic transmission of RBCs were then examined. In retinal slice preparations orexin-B suppressed GABA receptor-mediated inhibitory postsynaptic currents of RBCs in the inner plexiform layer. Furthermore, using whole-cell recordings in isolated RBCs it was shown that orexin-B suppressed GABAC receptor-, but not GABAA receptor-, mediated currents of the RBCs, an effect that was blocked by OX1R and OX2R antagonists. The orexin-B-induced inhibition of GABAC currents was likely mediated by a Gi/o/PC-PLC/Ca2+-independent PKC signaling pathway, as such inhibition was absent when each step of the above-pathway was blocked with GDP-β-S/pertussis toxin (for Gi/o), D609 (for PLC), bisindolylmaleimide IV (for PKC)/rottlerin (for PKCδ), respectively. The orexin-B-induced potentiation of RBC activity may improve visual acuity and contrast sensitivity of the animal during the dark period (wake phase).

Journal

NeuropharmacologyElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial