“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Optimization of continuous ball mills used for finish-grinding of cement by varying the L/D ratio, ball charge filling ratio, ball size and residence time

During the last decade, semi-finish-grinding plants have been used more and more for the energy efficient grinding of high-quality cement. In 1999, it was found that by decreasing the ball charge filling ratio it was possible to lower the specific energy demand for grinding significantly. It was obvious, too, that the L/D ratio influences the specific energy demand and the mill throughput as well. Therefore, a huge test program was carried with a semi-industrial ball mill, which was operated in closed circuit. The mass-specific surface area of the two feed materials (intermediate product) used were quite typical for industrial semi-finish grinding plants. The values were 2200 and 3000 cm 2 /g according to Blaine. The product finenesses were 3000 and 3800 cm 2 /g, respectively. The L/D ratio of the ball mill was varied in four steps of 1.75, 2.1, 2.79 and 3.49, and the ball charge filling ratio was varied in three steps of 15%, 20% and 25%. The experiments clearly indicated that the optimal L/D ratio and the optimal ball charge filling ratio are different for each feed fineness. The influence of the ball charge grading on the specific energy demand, characterised by the average ball diameter, was tested by means of a discontinuous laboratory ball mill. The results showed that by using a finer ball grading the specific energy demand could be lowered considerably. The obtained results can be explained well by theoretical considerations regarding the ruling stress intensity and the number of stress events. The stress intensity expressed as the power input per ball is dependent on the ball diameter to the third power and only slightly dependent on the inner diameter of the mill. The number of stresses can be characterised by the average retention time of the ground material inside the mill if the ball charge grading remains unchanged. The optimal retention time depends not only on the feed material and the desired comminution result but also on the ball charge filling ratio and particularly on the L/D ratio. On the basis of the present results and considerations, a specific optimisation of ball mills in semi-finish-grinding plants can be done. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Mineral Processing Elsevier
Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually