Optimization and characterization of a murine lung infection model for the evaluation of novel therapeutics against Burkholderia cenocepacia

Optimization and characterization of a murine lung infection model for the evaluation of novel... Several B. cenocepacia mouse models are available to study the pulmonary infection by this Burkholderia cepacia complex (BCC) species. However, a characterized B. cenocepacia mouse model to evaluate the efficacy of potential new antibacterial therapies is not yet described. Therefore, we optimized and validated the course of infection (i.e. bacterial proliferation in lung, liver and spleen) and the efficacy of a reference antibiotic, tobramycin (TOB), in a mouse lung infection model. Furthermore, the local immune response and histological changes in lung tissue were studied during infection and treatment. A reproducible lung infection was observed when immunosuppressed BALB/c mice were infected with B. cenocepacia LMG 16656. Approximately 50 to 60% of mice infected with this BCC species demonstrated a dissemination to liver and spleen. TOB treatment resulted in a two log reduction in lung burden, prevented dissemination of B. cenocepacia to liver and spleen and significantly reduced levels of proinflammatory cytokines. As this mouse model is characterized by a reproducible course of infection and efficacy of TOB, it can be used as a tool for the in vivo evaluation of new antibacterial therapies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal Of Microbiological Methods Elsevier

Optimization and characterization of a murine lung infection model for the evaluation of novel therapeutics against Burkholderia cenocepacia

Loading next page...
 
/lp/elsevier/optimization-and-characterization-of-a-murine-lung-infection-model-for-RbnIX02srG
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0167-7012
eISSN
1872-8359
D.O.I.
10.1016/j.mimet.2017.06.003
Publisher site
See Article on Publisher Site

Abstract

Several B. cenocepacia mouse models are available to study the pulmonary infection by this Burkholderia cepacia complex (BCC) species. However, a characterized B. cenocepacia mouse model to evaluate the efficacy of potential new antibacterial therapies is not yet described. Therefore, we optimized and validated the course of infection (i.e. bacterial proliferation in lung, liver and spleen) and the efficacy of a reference antibiotic, tobramycin (TOB), in a mouse lung infection model. Furthermore, the local immune response and histological changes in lung tissue were studied during infection and treatment. A reproducible lung infection was observed when immunosuppressed BALB/c mice were infected with B. cenocepacia LMG 16656. Approximately 50 to 60% of mice infected with this BCC species demonstrated a dissemination to liver and spleen. TOB treatment resulted in a two log reduction in lung burden, prevented dissemination of B. cenocepacia to liver and spleen and significantly reduced levels of proinflammatory cytokines. As this mouse model is characterized by a reproducible course of infection and efficacy of TOB, it can be used as a tool for the in vivo evaluation of new antibacterial therapies.

Journal

Journal Of Microbiological MethodsElsevier

Published: Aug 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off