Optimal resolution for linking remotely sensed and forest inventory data in Europe

Optimal resolution for linking remotely sensed and forest inventory data in Europe Forests provide critical ecosystem services that ensure the sustainability of the environment and society. To manage forests on large scales, spatially explicit gridded data that describes the characteristics of these forests over the entire study area are required. There have been multiple efforts to create such data on regional and global scales. This type of gridded spatially explicit data on forest characteristics are typically done by integrating terrestrial forest inventory (NFI) and satellite-based remotely sensed data. Many studies that incorporate remotely sensed data and forest inventory data often directly compare pixels to inventory plots. The standard resolution of 0.0083° is typically used to integrate these two types of data sets. There is an assumption that, when producing gridded data sets incorporating forest inventory data, the finer the resolution the better the information. This assumption may seem intuitive, however at this resolution, in Europe, each 0.0083° cell has on average 1 NFI plot, which results in a sample with 0 degrees of freedom that represents 0.02% of the cell area. In this study, we challenge this assumption and we quantify the optimal resolution with which to compare and combine remotely sensed and NFI data from the largest collated and harmonized NFI data set in Europe including 196,434 plots. We determined that aggregating data with an original resolution of 0.0083° to between 0.0664° and 0.266° (or ×8 to ×32) produces the best agreement between these two forest inventory and remotely sensed data sets, and the lowest standard error in NFI data, and maintains the majority of the local-level spatial heterogeneity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

Optimal resolution for linking remotely sensed and forest inventory data in Europe

Loading next page...
 
/lp/elsevier/optimal-resolution-for-linking-remotely-sensed-and-forest-inventory-t1VNsHXyic
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Inc.
ISSN
0034-4257
D.O.I.
10.1016/j.rse.2016.05.021
Publisher site
See Article on Publisher Site

Abstract

Forests provide critical ecosystem services that ensure the sustainability of the environment and society. To manage forests on large scales, spatially explicit gridded data that describes the characteristics of these forests over the entire study area are required. There have been multiple efforts to create such data on regional and global scales. This type of gridded spatially explicit data on forest characteristics are typically done by integrating terrestrial forest inventory (NFI) and satellite-based remotely sensed data. Many studies that incorporate remotely sensed data and forest inventory data often directly compare pixels to inventory plots. The standard resolution of 0.0083° is typically used to integrate these two types of data sets. There is an assumption that, when producing gridded data sets incorporating forest inventory data, the finer the resolution the better the information. This assumption may seem intuitive, however at this resolution, in Europe, each 0.0083° cell has on average 1 NFI plot, which results in a sample with 0 degrees of freedom that represents 0.02% of the cell area. In this study, we challenge this assumption and we quantify the optimal resolution with which to compare and combine remotely sensed and NFI data from the largest collated and harmonized NFI data set in Europe including 196,434 plots. We determined that aggregating data with an original resolution of 0.0083° to between 0.0664° and 0.266° (or ×8 to ×32) produces the best agreement between these two forest inventory and remotely sensed data sets, and the lowest standard error in NFI data, and maintains the majority of the local-level spatial heterogeneity.

Journal

Remote Sensing of EnvironmentElsevier

Published: Sep 15, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off