Optimal cut-fill pairing and sequencing method in earthwork operation

Optimal cut-fill pairing and sequencing method in earthwork operation Earthwork operations consist of repeated cycles of excavating, moving, and backfilling processes, in which rock-earth block is excavated from its cut pit, moved to a fill pit, and then backfilled into its corresponding fill prism. An efficient earth allocation plan reduces the total earthwork cost. This paper presents a computational method called Optimal cut-fill Pairing and Sequencing (OPS) which identifies the most economical EAP. It identifies the optimal cut-fill pairs and their sequence which minimizes the total earthwork cost by hybridizing the mixed integer linear programming (MILP) and evolutionary algorithm (i.e., harmony search). The proposed method is of value to earthwork managers because it identifies the most favorable EAP by accounting for the rock-earth type of each and every prism, the series of prisms occupying each and every cut and fill pits, and the moving directions (i.e., the order of cut-fill prism pairs), expeditiously. This study is also of relevance to researchers because it provides a white box which defines the mathematical formula and computational procedures to identify the global solution in detail. Two test cases confirm the usability and validity of the computational method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automation in Construction Elsevier

Optimal cut-fill pairing and sequencing method in earthwork operation

Loading next page...
 
/lp/elsevier/optimal-cut-fill-pairing-and-sequencing-method-in-earthwork-operation-QHPFu5zCuu
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0926-5805
D.O.I.
10.1016/j.autcon.2017.12.010
Publisher site
See Article on Publisher Site

Abstract

Earthwork operations consist of repeated cycles of excavating, moving, and backfilling processes, in which rock-earth block is excavated from its cut pit, moved to a fill pit, and then backfilled into its corresponding fill prism. An efficient earth allocation plan reduces the total earthwork cost. This paper presents a computational method called Optimal cut-fill Pairing and Sequencing (OPS) which identifies the most economical EAP. It identifies the optimal cut-fill pairs and their sequence which minimizes the total earthwork cost by hybridizing the mixed integer linear programming (MILP) and evolutionary algorithm (i.e., harmony search). The proposed method is of value to earthwork managers because it identifies the most favorable EAP by accounting for the rock-earth type of each and every prism, the series of prisms occupying each and every cut and fill pits, and the moving directions (i.e., the order of cut-fill prism pairs), expeditiously. This study is also of relevance to researchers because it provides a white box which defines the mathematical formula and computational procedures to identify the global solution in detail. Two test cases confirm the usability and validity of the computational method.

Journal

Automation in ConstructionElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off