Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes

Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes This paper proposes a system-wide optimal coordinated energy dispatch method for a multi-energy microgrid in both the grid-connected and islanded modes. The studied microgrid consists of multiple energy carriers covering the controllable generation units (fuel cell, electric boiler, combined cooling, heat and power plant and electric chiller), uncontrollable generation units (wind turbine and photovoltaic cell) and energy storage devices (battery storage, heat storage tank and ice storage tank). The proposed energy dispatch method aims to minimize the microgrid net operating cost and enhance the dispatch flexibility in supplying power, heat and cooling in the day-ahead energy market. For both the grid-connected and islanded microgrid, their dispatch models are formulated as the mixed-integer linear programming problems, which can be efficiently solved by the commercial solvers. Comprehensive case studies are performed to evaluate the effectiveness of the proposed method and then compared with the traditional dispatch methods which supply power and heat/cooling energies separately. Simulation results demonstrate that the proposed method can achieve much higher operating efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Energy Elsevier

Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes

Loading next page...
 
/lp/elsevier/optimal-coordinated-energy-dispatch-of-a-multi-energy-microgrid-in-lBWGtNW4iI
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0306-2619
D.O.I.
10.1016/j.apenergy.2017.08.197
Publisher site
See Article on Publisher Site

Abstract

This paper proposes a system-wide optimal coordinated energy dispatch method for a multi-energy microgrid in both the grid-connected and islanded modes. The studied microgrid consists of multiple energy carriers covering the controllable generation units (fuel cell, electric boiler, combined cooling, heat and power plant and electric chiller), uncontrollable generation units (wind turbine and photovoltaic cell) and energy storage devices (battery storage, heat storage tank and ice storage tank). The proposed energy dispatch method aims to minimize the microgrid net operating cost and enhance the dispatch flexibility in supplying power, heat and cooling in the day-ahead energy market. For both the grid-connected and islanded microgrid, their dispatch models are formulated as the mixed-integer linear programming problems, which can be efficiently solved by the commercial solvers. Comprehensive case studies are performed to evaluate the effectiveness of the proposed method and then compared with the traditional dispatch methods which supply power and heat/cooling energies separately. Simulation results demonstrate that the proposed method can achieve much higher operating efficiency.

Journal

Applied EnergyElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off