Optimal control in teleoperation systems with time delay: A singular perturbation approach

Optimal control in teleoperation systems with time delay: A singular perturbation approach The main goal of controller design in teleoperation systems is to achieve optimal performance, transparency and stability in presence of factors such as time delay in communication channel and modeling uncertainties. The teleoperation systems usually have complex dynamic. Consequently, differential equation solution of optimal control problem is difficult and complex for them. This paper presents a novel method for designing optimal controller based on singular perturbation framework for these systems. Firstly, we use the Taylor expansion to model the time delay, with considering time delay term; we derive a singular perturbation formulation for the teleoperation system. Using singular perturbation model and Chang decoupling transformation, singularly perturbed differential equations of optimal control problem is decomposed into the reduced order slow and fast differential equations. A formula is obtained that produces the solution of original differential equations of optimal control problem in terms of solutions of the slow and fast reduced order matrix differential equations. The reduced-order differential equations decrease the complexity of the optimal control problem for teleoperation systems. The simulations verify the effectiveness of the proposed control method and excellent performances tracking with high speed and small control signal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational and Applied Mathematics Elsevier

Optimal control in teleoperation systems with time delay: A singular perturbation approach

Loading next page...
 
/lp/elsevier/optimal-control-in-teleoperation-systems-with-time-delay-a-singular-yOX6XKqyMQ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0377-0427
eISSN
1879-1778
D.O.I.
10.1016/j.cam.2018.01.026
Publisher site
See Article on Publisher Site

Abstract

The main goal of controller design in teleoperation systems is to achieve optimal performance, transparency and stability in presence of factors such as time delay in communication channel and modeling uncertainties. The teleoperation systems usually have complex dynamic. Consequently, differential equation solution of optimal control problem is difficult and complex for them. This paper presents a novel method for designing optimal controller based on singular perturbation framework for these systems. Firstly, we use the Taylor expansion to model the time delay, with considering time delay term; we derive a singular perturbation formulation for the teleoperation system. Using singular perturbation model and Chang decoupling transformation, singularly perturbed differential equations of optimal control problem is decomposed into the reduced order slow and fast differential equations. A formula is obtained that produces the solution of original differential equations of optimal control problem in terms of solutions of the slow and fast reduced order matrix differential equations. The reduced-order differential equations decrease the complexity of the optimal control problem for teleoperation systems. The simulations verify the effectiveness of the proposed control method and excellent performances tracking with high speed and small control signal.

Journal

Journal of Computational and Applied MathematicsElsevier

Published: Aug 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off