Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands

Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands The feasibility of detecting the seasonal variation in leaf area index (LAI) in boreal conifer forests is investigated using optical instruments. The LAI of six stands was measured. They include young and old jack pine ( Pinus banksiana ) and old black spruce ( Picea mariana ) located near the southern border (near Prince Albert, Saskatchewan) and near the northern border (near Thompson, Manitoba) of the Canadian boreal ecotone. LAI values of the stands are obtained by making several corrections to the effective LAI measured from the LI-COR LAI-2000 Plant Canopy Analyzer (PCA). The corrections include a foliage element (shoot) clumping index (for clumping at scales larger than the shoot) measured using the optical instrument TRAC (Tracing Radiation and Architecture of Canopies) developed by Chen and Cihlar (Chen, J.M. and Cihlar, J., 1995a, Plant canopy gap size analysis theory for improving optical measurements of leaf area index of plant canopies, Appl. Opt., 34: 6211–6222), a needle-to-shoot area ratio (for clumping within the shoot) obtained from shoot samples, and a woody-to-total area ratio obtained through destructive sampling of trees. It is found that the effective LAI varied about 5% to 10% in the growing season and the element clumping index remained almost unchanged. The needle-to-shoot area ratio varied the most, about 15% to 25%, which is of the same order of magnitude as the expected seasonal variability in LAI. This demonstrates that most of the seasonal variation information is contained in the needle-to-shoot area ratio, which can not be measured indirectly using in situ optical instruments and has to be obtained from a large quantity of shoot sample analysis which is laborious and error-prone. Based on our experience, an improved and convenient shoot sampling strategy is suggested for future studies. The optically-based LAI values were compared with destructive sampling results for three of the stands. Based on error analysis, we believe that optical measurements combined with shoot sample analysis can produce LAI values for conifer stands which are more accurate than destructive sampling results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural and Forest Meteorology Elsevier

Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands

Agricultural and Forest Meteorology, Volume 80 (2) – Jul 1, 1996

Loading next page...
 
/lp/elsevier/optically-based-methods-for-measuring-seasonal-variation-of-leaf-area-v0odSCWgcm
Publisher
Elsevier
Copyright
Copyright © 1996 Elsevier Ltd
ISSN
0168-1923
D.O.I.
10.1016/0168-1923(95)02291-0
Publisher site
See Article on Publisher Site

Abstract

The feasibility of detecting the seasonal variation in leaf area index (LAI) in boreal conifer forests is investigated using optical instruments. The LAI of six stands was measured. They include young and old jack pine ( Pinus banksiana ) and old black spruce ( Picea mariana ) located near the southern border (near Prince Albert, Saskatchewan) and near the northern border (near Thompson, Manitoba) of the Canadian boreal ecotone. LAI values of the stands are obtained by making several corrections to the effective LAI measured from the LI-COR LAI-2000 Plant Canopy Analyzer (PCA). The corrections include a foliage element (shoot) clumping index (for clumping at scales larger than the shoot) measured using the optical instrument TRAC (Tracing Radiation and Architecture of Canopies) developed by Chen and Cihlar (Chen, J.M. and Cihlar, J., 1995a, Plant canopy gap size analysis theory for improving optical measurements of leaf area index of plant canopies, Appl. Opt., 34: 6211–6222), a needle-to-shoot area ratio (for clumping within the shoot) obtained from shoot samples, and a woody-to-total area ratio obtained through destructive sampling of trees. It is found that the effective LAI varied about 5% to 10% in the growing season and the element clumping index remained almost unchanged. The needle-to-shoot area ratio varied the most, about 15% to 25%, which is of the same order of magnitude as the expected seasonal variability in LAI. This demonstrates that most of the seasonal variation information is contained in the needle-to-shoot area ratio, which can not be measured indirectly using in situ optical instruments and has to be obtained from a large quantity of shoot sample analysis which is laborious and error-prone. Based on our experience, an improved and convenient shoot sampling strategy is suggested for future studies. The optically-based LAI values were compared with destructive sampling results for three of the stands. Based on error analysis, we believe that optical measurements combined with shoot sample analysis can produce LAI values for conifer stands which are more accurate than destructive sampling results.

Journal

Agricultural and Forest MeteorologyElsevier

Published: Jul 1, 1996

References

  • Defining leaf area index for non-flat leaves
    Chen, J.M.; Black, T.A.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off