On the S-layer of Thermus thermophilus and the assembling of its main protein SlpA

On the S-layer of Thermus thermophilus and the assembling of its main protein SlpA We have isolated and analysed the cell envelope of the thermophilic bacterium Thermus thermophilus HB8. Isolated cell walls, characterized by the dominance of the S-layer protein SlpA, are found to be constituted by several protein complexes of high molecular weights. Further isolation steps, starting from the cell wall samples, led to the selective release of the S-layer protein SlpA in solution as confirmed by mass spectrometry. Blue Native gel electrophoresis on these samples showed that SlpA is organized into a specific hierarchical order of oligomeric states that are consistent with the complexes at high molecular weight identified on the total cell wall fraction. The analysis showed that SlpA bases this peculiar organization on monomers and exceptionally stable dimers, leading to the formation of tetramers, heptamers, and decamers. Furthermore, the two elementary units of SlpA, monomers and dimers, are regulated by the presence of calcium not only for the assembling of monomers into dimers, but also for the splitting of dimers into monomers. Finally, the SlpA protein was found to be subjected to specific proteolysis leading to characteristic degradation products. Findings are discussed in terms of S-layer assembling properties as bases for understanding its structure, turn-over and organization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta Biomembranes Or Bba Biomembranes Elsevier

Loading next page...
 
/lp/elsevier/on-the-s-layer-of-thermus-thermophilus-and-the-assembling-of-its-main-JtxuOxMB5L
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0005-2736
eISSN
1879-2642
D.O.I.
10.1016/j.bbamem.2018.05.010
Publisher site
See Article on Publisher Site

Abstract

We have isolated and analysed the cell envelope of the thermophilic bacterium Thermus thermophilus HB8. Isolated cell walls, characterized by the dominance of the S-layer protein SlpA, are found to be constituted by several protein complexes of high molecular weights. Further isolation steps, starting from the cell wall samples, led to the selective release of the S-layer protein SlpA in solution as confirmed by mass spectrometry. Blue Native gel electrophoresis on these samples showed that SlpA is organized into a specific hierarchical order of oligomeric states that are consistent with the complexes at high molecular weight identified on the total cell wall fraction. The analysis showed that SlpA bases this peculiar organization on monomers and exceptionally stable dimers, leading to the formation of tetramers, heptamers, and decamers. Furthermore, the two elementary units of SlpA, monomers and dimers, are regulated by the presence of calcium not only for the assembling of monomers into dimers, but also for the splitting of dimers into monomers. Finally, the SlpA protein was found to be subjected to specific proteolysis leading to characteristic degradation products. Findings are discussed in terms of S-layer assembling properties as bases for understanding its structure, turn-over and organization.

Journal

Biochimica et Biophysica Acta Biomembranes Or Bba BiomembranesElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off