On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons

On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical... Urban heat island is an anthropogenic phenomenon affecting urban outdoor thermal comfort conditions and energy utilization. This is even truer in urban canyon configurations, characterized by low sky view factor and where the effect of short-wave and long-wave solar radiation on construction surfaces is able to produce massive outdoor local overheating. Traditional solutions cannot always be applied in urban historical canyons, where the exteriors of buildings cannot be modified due to preservation. Here, the capability of innovative cool materials to mitigate local microclimate of historical urban canyons is investigated. A preliminary experimental characterization of the materials is performed. A numerical simulation of the microclimate effect generated by the application of such materials is performed. Results show that the proposed materials improve the microclimate without neglecting preservation constrains. Such materials set the best scenarios in terms of thermal comfort, by enhancing albedo on canyon surfaces. Their application on the vertical surfaces of narrow canyons can lead to deleterious effects on outdoor thermal comfort. Such findings are confirmed by PMV and MOCI analyses. Energy efficiency solutions may be effectively implemented in historical districts, opening the doors to other tailored solutions, such as integrated renewables, to make these environments more sustainable and comfortable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons

Loading next page...
 
/lp/elsevier/on-the-impact-of-innovative-materials-on-outdoor-thermal-comfort-of-m5CnBvv0cr
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.11.074
Publisher site
See Article on Publisher Site

Abstract

Urban heat island is an anthropogenic phenomenon affecting urban outdoor thermal comfort conditions and energy utilization. This is even truer in urban canyon configurations, characterized by low sky view factor and where the effect of short-wave and long-wave solar radiation on construction surfaces is able to produce massive outdoor local overheating. Traditional solutions cannot always be applied in urban historical canyons, where the exteriors of buildings cannot be modified due to preservation. Here, the capability of innovative cool materials to mitigate local microclimate of historical urban canyons is investigated. A preliminary experimental characterization of the materials is performed. A numerical simulation of the microclimate effect generated by the application of such materials is performed. Results show that the proposed materials improve the microclimate without neglecting preservation constrains. Such materials set the best scenarios in terms of thermal comfort, by enhancing albedo on canyon surfaces. Their application on the vertical surfaces of narrow canyons can lead to deleterious effects on outdoor thermal comfort. Such findings are confirmed by PMV and MOCI analyses. Energy efficiency solutions may be effectively implemented in historical districts, opening the doors to other tailored solutions, such as integrated renewables, to make these environments more sustainable and comfortable.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial