On the coupled geomorphological and ecohydrological organization of river basins

On the coupled geomorphological and ecohydrological organization of river basins This paper examines the linkage between the drainage network and the patterns of soil water balance components determined by the organization of vegetation, soils and climate in a semiarid river basin. Research during the last 10 years has conclusively shown an increasing degree of organization and unifying principles behind the structure of the drainage network and the three-dimensional geometry of river basins. This cohesion exists despite the infinite variety of shapes and forms one observes in natural watersheds. What has been relatively unexplored in a quantitative and general manner is the question of whether or not the interaction of vegetation, soils, and climate also display a similar set of unifying characteristics among the very different patterns they presents in river basins. A recently formulated framework for the water balance at the daily level links the observed patterns of basin organization to the soil moisture dynamics. Using available geospatial data, we assign soil, climate, and vegetation properties across the basin and analyze the probabilistic characteristics of steady-state soil moisture distribution. We investigate the presence of organization through the analysis of the spatial patterns of the steady-state soil moisture distribution, as well as in the distribution of observed vegetation patterns, simulated vegetation dynamic water stress and hydrological fluxes such as transpiration. Here we show that the drainage network acts as a template for the organization of both vegetation and hydrological patterns, which exhibit self-affine characteristics in their distribution across the river basin. Our analyses suggest the existence of a balance between the large-scale determinants of vegetation pattern reflecting optimality in the response to water stress and the random small-scale patterns that arise from local factors and ecological legacies such as those caused by dispersal, disturbance, and founder effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Water Resources Elsevier

On the coupled geomorphological and ecohydrological organization of river basins

Loading next page...
 
/lp/elsevier/on-the-coupled-geomorphological-and-ecohydrological-organization-of-QNDPXX4hLQ
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ltd
ISSN
0309-1708
eISSN
1872-9657
D.O.I.
10.1016/j.advwatres.2004.08.013
Publisher site
See Article on Publisher Site

Abstract

This paper examines the linkage between the drainage network and the patterns of soil water balance components determined by the organization of vegetation, soils and climate in a semiarid river basin. Research during the last 10 years has conclusively shown an increasing degree of organization and unifying principles behind the structure of the drainage network and the three-dimensional geometry of river basins. This cohesion exists despite the infinite variety of shapes and forms one observes in natural watersheds. What has been relatively unexplored in a quantitative and general manner is the question of whether or not the interaction of vegetation, soils, and climate also display a similar set of unifying characteristics among the very different patterns they presents in river basins. A recently formulated framework for the water balance at the daily level links the observed patterns of basin organization to the soil moisture dynamics. Using available geospatial data, we assign soil, climate, and vegetation properties across the basin and analyze the probabilistic characteristics of steady-state soil moisture distribution. We investigate the presence of organization through the analysis of the spatial patterns of the steady-state soil moisture distribution, as well as in the distribution of observed vegetation patterns, simulated vegetation dynamic water stress and hydrological fluxes such as transpiration. Here we show that the drainage network acts as a template for the organization of both vegetation and hydrological patterns, which exhibit self-affine characteristics in their distribution across the river basin. Our analyses suggest the existence of a balance between the large-scale determinants of vegetation pattern reflecting optimality in the response to water stress and the random small-scale patterns that arise from local factors and ecological legacies such as those caused by dispersal, disturbance, and founder effects.

Journal

Advances in Water ResourcesElsevier

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off