# On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs

On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs If u is a vertex of a graph G, then the transmission of u is the sum of distances from u to all the other vertices of G. The Wiener complexity CW(G) of G is the number of different complexities of its vertices. G is transmission irregular if CW(G)=n(G). It is proved that almost no graphs are transmission irregular. Let Tn1,n2,n3 be the tree obtained from paths of respective lengths n1, n2, and n3, by identifying an end-vertex of each of them. It is proved that T1,n2,n3 is transmission irregular if and only if n3=n2+1 and n2∉{(k2−1)/2,(k2−2)/2} for some k ≥ 3. It is also proved that if T is an asymmetric tree of order n, then the Wiener index of T is bounded by (n3−13n+48)/6 with equality if and only if T=T1,2,n−4. A parallel result is deduced for asymmetric uni-cyclic graphs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Computation Elsevier

# On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs

Applied Mathematics and Computation, Volume 328 – Jul 1, 2018
6 pages

/lp/elsevier/on-graphs-whose-wiener-complexity-equals-their-order-and-on-wiener-kfqx5D5dMB
Publisher
Elsevier
ISSN
0096-3003
eISSN
1873-5649
D.O.I.
10.1016/j.amc.2018.01.039
Publisher site
See Article on Publisher Site

### Abstract

If u is a vertex of a graph G, then the transmission of u is the sum of distances from u to all the other vertices of G. The Wiener complexity CW(G) of G is the number of different complexities of its vertices. G is transmission irregular if CW(G)=n(G). It is proved that almost no graphs are transmission irregular. Let Tn1,n2,n3 be the tree obtained from paths of respective lengths n1, n2, and n3, by identifying an end-vertex of each of them. It is proved that T1,n2,n3 is transmission irregular if and only if n3=n2+1 and n2∉{(k2−1)/2,(k2−2)/2} for some k ≥ 3. It is also proved that if T is an asymmetric tree of order n, then the Wiener index of T is bounded by (n3−13n+48)/6 with equality if and only if T=T1,2,n−4. A parallel result is deduced for asymmetric uni-cyclic graphs.

### Journal

Applied Mathematics and ComputationElsevier

Published: Jul 1, 2018

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations