Ocean-atmosphere interactions as drivers of mid-to-late Holocene rapid climate changes: Evidence from high-resolution stalagmite records at DeSoto Caverns, Southeast USA

Ocean-atmosphere interactions as drivers of mid-to-late Holocene rapid climate changes: Evidence... Oxygen and carbon isotope time-series derived from an actively growing aragonitic stalagmite in DeSoto Caverns exhibit with unusual clarity rapid hydroclimate changes in the mid-to-late Holocene. Data consist of 1884 δ18O and δ13C determinations whose chronology is anchored on 35 230Th/234U absolute dates in the interval 6.0–1.1 cal ka BP. Exceptional 18O and 13C-enrichments centered at 4.8 ± 0.14 cal ka BP likely represent the imprints of a severe drought. Isotope cycles from 4.7 to 1.3 cal ka BP, exhibit a dominant periodicity of 68 ± 4 yrs. A gradual cooling trend of ∼0.6 °C/103 yrs is attributed to a declining seasonal contrast in insolation. The synchronicity of the mega-drought in the Southeast US with the (1) termination of the African Humid Period; (ii) abrupt reduction of the North Atlantic Deep Water production, and (iii) rapid sea-ice expansion in the polar regions of both Hemispheres testifies to the global extent and rapidity of the “5 ka” event and points to the North Atlantic Deep Water variability as the likely controlling factor. The multidecadal cycles are consistent with alternating dry and wet summers occurring during a long-term switch in the seasonal rainfall amount dominance from winter to summer. The periodic summer droughts in the Southeast US support climate models that predict profound hydroclimate changes in the late Holocene governed by the Atlantic Multidecadal Oscillation. The relatively short and rapid hydroclimate phase transitions documented in this study introduce a complication in the correlation of late Holocene drought events that had significant societal impacts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quaternary Science Reviews Elsevier

Ocean-atmosphere interactions as drivers of mid-to-late Holocene rapid climate changes: Evidence from high-resolution stalagmite records at DeSoto Caverns, Southeast USA

Loading next page...
 
/lp/elsevier/ocean-atmosphere-interactions-as-drivers-of-mid-to-late-holocene-rapid-X060aHQioY
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0277-3791
eISSN
1873-457X
D.O.I.
10.1016/j.quascirev.2017.06.023
Publisher site
See Article on Publisher Site

Abstract

Oxygen and carbon isotope time-series derived from an actively growing aragonitic stalagmite in DeSoto Caverns exhibit with unusual clarity rapid hydroclimate changes in the mid-to-late Holocene. Data consist of 1884 δ18O and δ13C determinations whose chronology is anchored on 35 230Th/234U absolute dates in the interval 6.0–1.1 cal ka BP. Exceptional 18O and 13C-enrichments centered at 4.8 ± 0.14 cal ka BP likely represent the imprints of a severe drought. Isotope cycles from 4.7 to 1.3 cal ka BP, exhibit a dominant periodicity of 68 ± 4 yrs. A gradual cooling trend of ∼0.6 °C/103 yrs is attributed to a declining seasonal contrast in insolation. The synchronicity of the mega-drought in the Southeast US with the (1) termination of the African Humid Period; (ii) abrupt reduction of the North Atlantic Deep Water production, and (iii) rapid sea-ice expansion in the polar regions of both Hemispheres testifies to the global extent and rapidity of the “5 ka” event and points to the North Atlantic Deep Water variability as the likely controlling factor. The multidecadal cycles are consistent with alternating dry and wet summers occurring during a long-term switch in the seasonal rainfall amount dominance from winter to summer. The periodic summer droughts in the Southeast US support climate models that predict profound hydroclimate changes in the late Holocene governed by the Atlantic Multidecadal Oscillation. The relatively short and rapid hydroclimate phase transitions documented in this study introduce a complication in the correlation of late Holocene drought events that had significant societal impacts.

Journal

Quaternary Science ReviewsElsevier

Published: Aug 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off