Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry

Objective landslide detection and surface morphology mapping using high-resolution airborne laser... A map of extant slope failures is the most basic element of any landslide assessment. Without an accurate inventory of slope instability, it is not possible to analyze the controls on the spatial and temporal patterns of mass movement or the environmental, human, or geomorphic consequences of slides. Landslide inventory maps are tedious to compile, difficult to make in vegetated terrain using conventional techniques, and tend to be subjective. In addition, most landslide inventories simply outline landslide boundaries and do not offer information about landslide mechanics as manifested by internal deformation features. In an alternative approach, we constructed accurate, high-resolution DEMs from airborne laser altimetry (LIDAR) data to characterize a large landslide complex and surrounding terrain near Christchurch, New Zealand. One-dimensional, circular (2-D) and spherical (3-D) statistics are used to map the local topographic roughness in the DEMs over a spatial scale of 1.5 to 10 m. The bedrock landslide is rougher than adjacent unfailed terrain and any of the statistics can be employed to automatically detect and map the overall slide complex. Furthermore, statistics that include a measure of the local variability of aspect successfully delineate four kinematic units within the gently sloping lower half of the slide. Features with a minimum size of surface folds that have a wavelength of about 11 to 12 m and amplitude of about 1 m are readily mapped. Two adjacent earthflows within the landslide complex are distinguished by a contrast in median roughness, and texture and continuity of roughness elements. The less active of the earthflows has a surface morphology that presumably has been smoothed by surface processes. The Laplacian operator also accurately maps the kinematic units and the folds and longitudinal levees within and at the margins of the units. Finally, two-dimensional power spectra analyses are used to quantify how roughness varies with length scale. These results indicate that no dominant length scale of roughness exists for smooth, unfailed terrain. In contrast, zones with different styles of landslide deformation exhibit distinctive spectral peaks that correspond to the scale of deformation features, such as the compression folds. The topographic-based analyses described here may be used to objectively delineate landslide features, generate mechanical inferences about landslide behavior, and evaluate relatively the recent activity of slides. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry

Geomorphology, Volume 57 (3) – Feb 10, 2004

Loading next page...
 
/lp/elsevier/objective-landslide-detection-and-surface-morphology-mapping-using-yXhmXOOy0p
Publisher
Elsevier
Copyright
Copyright © 2003 Elsevier Ltd
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/S0169-555X(03)00164-8
Publisher site
See Article on Publisher Site

Abstract

A map of extant slope failures is the most basic element of any landslide assessment. Without an accurate inventory of slope instability, it is not possible to analyze the controls on the spatial and temporal patterns of mass movement or the environmental, human, or geomorphic consequences of slides. Landslide inventory maps are tedious to compile, difficult to make in vegetated terrain using conventional techniques, and tend to be subjective. In addition, most landslide inventories simply outline landslide boundaries and do not offer information about landslide mechanics as manifested by internal deformation features. In an alternative approach, we constructed accurate, high-resolution DEMs from airborne laser altimetry (LIDAR) data to characterize a large landslide complex and surrounding terrain near Christchurch, New Zealand. One-dimensional, circular (2-D) and spherical (3-D) statistics are used to map the local topographic roughness in the DEMs over a spatial scale of 1.5 to 10 m. The bedrock landslide is rougher than adjacent unfailed terrain and any of the statistics can be employed to automatically detect and map the overall slide complex. Furthermore, statistics that include a measure of the local variability of aspect successfully delineate four kinematic units within the gently sloping lower half of the slide. Features with a minimum size of surface folds that have a wavelength of about 11 to 12 m and amplitude of about 1 m are readily mapped. Two adjacent earthflows within the landslide complex are distinguished by a contrast in median roughness, and texture and continuity of roughness elements. The less active of the earthflows has a surface morphology that presumably has been smoothed by surface processes. The Laplacian operator also accurately maps the kinematic units and the folds and longitudinal levees within and at the margins of the units. Finally, two-dimensional power spectra analyses are used to quantify how roughness varies with length scale. These results indicate that no dominant length scale of roughness exists for smooth, unfailed terrain. In contrast, zones with different styles of landslide deformation exhibit distinctive spectral peaks that correspond to the scale of deformation features, such as the compression folds. The topographic-based analyses described here may be used to objectively delineate landslide features, generate mechanical inferences about landslide behavior, and evaluate relatively the recent activity of slides.

Journal

GeomorphologyElsevier

Published: Feb 10, 2004

References

  • Two examples of the use of SAR interferometry on displacement fields of small spatial extent
    Carnec, C.; Massonnet, D.; King, C.
  • The contribution of landslides to landscape evolution in Europe
    Cendrero, A.; Dramis, F.
  • A methodological approach for the analysis of the temporal occurrence and triggering factors of landslides
    Gonzalez-Diez, A.; Remondo, J.; Diaz de Teran, J.; Cendrero, A.
  • Classic and new dating methods for assessing the temporal occurrence of mass movements
    Lang, A.; Moya, J.; Corominas, J.; Schrott, L.; Dikau, R.
  • Limits to relief
    Schmidt, K.M.; Montgomery, D.R.
  • Fractals and Chaos in Geology and Geophysics
    Turcotte, D.L.
  • Quantitative analysis of land surface topography
    Zevenbergen, L.W.; Thorne, C.R.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off