Object individuation and compensation in healthy aging

Object individuation and compensation in healthy aging Theories on neural compensation suggest that aged participants overactivate the brain areas involved in a task to compensate for the age-related decline. In this electrophysiological study, we investigated the temporal locus of neural overactivation in aging during multiple target processing. We measured performance and three event-related brain potential responses (N1, N2pc, and contralateral delay activity) in young and old adults, while they enumerated a variable number (1–4) of targets presented in an easy (distractor absent) or difficult (distractor present) condition. The main results indicated that although N2pc (∼200 ms) increased in amplitude in the distractor-present condition in the young group, no modulation occurred for the old group. Old participants were associated with larger N2pc amplitudes than young participants in the distractor-absent condition, where both groups had comparable levels of accuracy. These effects were not present for N1 and contralateral delay activity. Overall, the data suggest that in enumeration, aging is associated with compensatory effects that rely on the selection mechanism responsible for target individuation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurobiology of Aging Elsevier

Object individuation and compensation in healthy aging

Loading next page...
 
/lp/elsevier/object-individuation-and-compensation-in-healthy-aging-vsTyhrgJhj
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Inc.
ISSN
0197-4580
D.O.I.
10.1016/j.neurobiolaging.2016.01.013
Publisher site
See Article on Publisher Site

Abstract

Theories on neural compensation suggest that aged participants overactivate the brain areas involved in a task to compensate for the age-related decline. In this electrophysiological study, we investigated the temporal locus of neural overactivation in aging during multiple target processing. We measured performance and three event-related brain potential responses (N1, N2pc, and contralateral delay activity) in young and old adults, while they enumerated a variable number (1–4) of targets presented in an easy (distractor absent) or difficult (distractor present) condition. The main results indicated that although N2pc (∼200 ms) increased in amplitude in the distractor-present condition in the young group, no modulation occurred for the old group. Old participants were associated with larger N2pc amplitudes than young participants in the distractor-absent condition, where both groups had comparable levels of accuracy. These effects were not present for N1 and contralateral delay activity. Overall, the data suggest that in enumeration, aging is associated with compensatory effects that rely on the selection mechanism responsible for target individuation.

Journal

Neurobiology of AgingElsevier

Published: Apr 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial