O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation

O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability,... Resveratrol is a natural phenol with many positive effects for human health. However it is a photosensitive molecule with geometric isomerism, easily oxidised with short biological half-life and rapid metabolism and elimination. Thus, encapsulation of resveratrol is necessary. It has low solubility in water and in most of common oils. The goal of this work was to prepare oil-in-water emulsion stabilized by quinoa starch particles containing resveratrol. Quinoa starch particles were modified with Octenyl Succinic Anhydride (OSA) (degree of substitution 1.8%) to make them less hydrophilic. In order to compare starch effectivity as stabilizer, a common non-ionic surfactant Tween 20 was used to formulate surfactant stabilized emulsions. As dispersed phase a mixture of miglyol and orange oil in a volume ratio 1:9 was used in order to increase resveratrol solubility in the oily phase. Both types of emulsions were formulated in full coverage conditions with similar mean droplet size. Thus, differences in the emulsions properties observed only depend on the type of emulsifier.Pickering emulsions stabilized by OSA-modified quinoa starch granules resulted more stable against creaming phenomena. The rheological behaviour was influenced by the type and the amount of dispersed phase used. Resveratrol encapsulation results revealed that formulations based on starch Pickering emulsions are an appropriate resveratrol carrier system for further use in functional food formulations, better than surfactant stabilized emulsions, leading to encapsulation efficiency (EE) values up to 98%, being more than twice that of the surfactant stabilized systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Engineering Elsevier

O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation

Loading next page...
 
/lp/elsevier/o-w-emulsions-stabilized-by-osa-modified-starch-granules-versus-non-y9qwa2U27A
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0260-8774
D.O.I.
10.1016/j.jfoodeng.2017.11.009
Publisher site
See Article on Publisher Site

Abstract

Resveratrol is a natural phenol with many positive effects for human health. However it is a photosensitive molecule with geometric isomerism, easily oxidised with short biological half-life and rapid metabolism and elimination. Thus, encapsulation of resveratrol is necessary. It has low solubility in water and in most of common oils. The goal of this work was to prepare oil-in-water emulsion stabilized by quinoa starch particles containing resveratrol. Quinoa starch particles were modified with Octenyl Succinic Anhydride (OSA) (degree of substitution 1.8%) to make them less hydrophilic. In order to compare starch effectivity as stabilizer, a common non-ionic surfactant Tween 20 was used to formulate surfactant stabilized emulsions. As dispersed phase a mixture of miglyol and orange oil in a volume ratio 1:9 was used in order to increase resveratrol solubility in the oily phase. Both types of emulsions were formulated in full coverage conditions with similar mean droplet size. Thus, differences in the emulsions properties observed only depend on the type of emulsifier.Pickering emulsions stabilized by OSA-modified quinoa starch granules resulted more stable against creaming phenomena. The rheological behaviour was influenced by the type and the amount of dispersed phase used. Resveratrol encapsulation results revealed that formulations based on starch Pickering emulsions are an appropriate resveratrol carrier system for further use in functional food formulations, better than surfactant stabilized emulsions, leading to encapsulation efficiency (EE) values up to 98%, being more than twice that of the surfactant stabilized systems.

Journal

Journal of Food EngineeringElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off