Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action

Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action The coupling effect between ship motion response and internal sloshing flow is analyzed in this paper. The viscous two-phase flow model in OpenFOAM based on the Volume Of Fluid (VOF) interface capturing technique is adopted for solving the internal sloshing flow, while an impulse response function (IRF) method is employed for external ship response. A three-dimensional simplified LNG-FPSO ship with two partially-filled prismatic tanks is considered. Numerical simulations show that the coupling effect is significant at low-filling conditions in Beam Sea and the typical anti-rolling characteristics can be observed in such cases. The ship motion response shows strong sensitivity to incident wave steepness, especially around the natural frequencies for ship motion and sloshing motion respectively. Besides, no impact behavior in sloshing pressure and moment signals is observed when the incident wave is close to natural frequency of ship motion. Instead, impact phenomena can be observed only when the incident wave is close to sloshing natural frequency. However, the steady-state ship motion response is still found to be almost linear and sinusoidal at that wave frequency. The higher-order harmonics of the sloshing moment are filtered out by the system. The sloshing impact loading has no significant coupling effect on global ship response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Engineering Elsevier

Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action

Loading next page...
 
/lp/elsevier/numerical-simulation-of-coupling-effect-between-ship-motion-and-liquid-UwhKwlWLjq
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0029-8018
eISSN
1873-5258
D.O.I.
10.1016/j.oceaneng.2015.07.044
Publisher site
See Article on Publisher Site

Abstract

The coupling effect between ship motion response and internal sloshing flow is analyzed in this paper. The viscous two-phase flow model in OpenFOAM based on the Volume Of Fluid (VOF) interface capturing technique is adopted for solving the internal sloshing flow, while an impulse response function (IRF) method is employed for external ship response. A three-dimensional simplified LNG-FPSO ship with two partially-filled prismatic tanks is considered. Numerical simulations show that the coupling effect is significant at low-filling conditions in Beam Sea and the typical anti-rolling characteristics can be observed in such cases. The ship motion response shows strong sensitivity to incident wave steepness, especially around the natural frequencies for ship motion and sloshing motion respectively. Besides, no impact behavior in sloshing pressure and moment signals is observed when the incident wave is close to natural frequency of ship motion. Instead, impact phenomena can be observed only when the incident wave is close to sloshing natural frequency. However, the steady-state ship motion response is still found to be almost linear and sinusoidal at that wave frequency. The higher-order harmonics of the sloshing moment are filtered out by the system. The sloshing impact loading has no significant coupling effect on global ship response.

Journal

Ocean EngineeringElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off