Numerical prediction of the printable density range of lattice structures for additive manufacturing

Numerical prediction of the printable density range of lattice structures for additive manufacturing Structured cellular structures are nowadays printed using additive manufacturing methods like powder bed fusion. The relative density of the cellular structures has a big role in the suitability of a lattice for printing due to the minimum printable radius constraint and powder being trapped inside an inclusion. In this work, the theoretical limits of the printable range of relative density of different lattice types are found based on the cell size using computer methods by leaving other process parameters for further research as the current parameters are the most basic ones. The results are approximated using simple polynomials to enable practical usage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Numerical prediction of the printable density range of lattice structures for additive manufacturing

Loading next page...
 
/lp/elsevier/numerical-prediction-of-the-printable-density-range-of-lattice-C880e3eRtx
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2017.08.007
Publisher site
See Article on Publisher Site

Abstract

Structured cellular structures are nowadays printed using additive manufacturing methods like powder bed fusion. The relative density of the cellular structures has a big role in the suitability of a lattice for printing due to the minimum printable radius constraint and powder being trapped inside an inclusion. In this work, the theoretical limits of the printable range of relative density of different lattice types are found based on the cell size using computer methods by leaving other process parameters for further research as the current parameters are the most basic ones. The results are approximated using simple polynomials to enable practical usage.

Journal

Materials & designElsevier

Published: Nov 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off