Numerical investigation of water entry of a wedge into waves with current effects using a fully nonlinear HOBEM

Numerical investigation of water entry of a wedge into waves with current effects using a fully... This paper concerns the hydrodynamic performance of a two-dimensional asymmetric wedge entering waves obliquely with gravity effect in the presence of a uniform current. A time-domain higher-order boundary element method (HOBEM) based on potential theory with fully nonlinear boundary conditions is developed to solve this problem. A stretched coordinate system is adopted in the spatial domain to avoid a large number of elements discretized in fixed computational domain at the initial stage. During mesh regriding and interpolation, a rotation scheme of the stretched coordinate system is employed to meet the requirement of continuity of flux at the intersection points. An auxiliary function is introduced to calculate pressure distribution on body surface. The present model is validated against the published numerical results for vertical wave entry in the absence of currents. Numerical calculations are conducted to analyze the dependence of the free surface elevation and the pressure distribution on the physical parameters, such as current velocity, incident wave amplitude, entry location, heel angle and oblique motion. It is found that the variation of current velocity has obvious effect on both the horizontal velocity of fluid and the wave steepness, which play a major role on free surface and pressure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Engineering Elsevier

Numerical investigation of water entry of a wedge into waves with current effects using a fully nonlinear HOBEM

Loading next page...
 
/lp/elsevier/numerical-investigation-of-water-entry-of-a-wedge-into-waves-with-0Ta3R7lUMW
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0029-8018
eISSN
1873-5258
D.O.I.
10.1016/j.oceaneng.2018.01.092
Publisher site
See Article on Publisher Site

Abstract

This paper concerns the hydrodynamic performance of a two-dimensional asymmetric wedge entering waves obliquely with gravity effect in the presence of a uniform current. A time-domain higher-order boundary element method (HOBEM) based on potential theory with fully nonlinear boundary conditions is developed to solve this problem. A stretched coordinate system is adopted in the spatial domain to avoid a large number of elements discretized in fixed computational domain at the initial stage. During mesh regriding and interpolation, a rotation scheme of the stretched coordinate system is employed to meet the requirement of continuity of flux at the intersection points. An auxiliary function is introduced to calculate pressure distribution on body surface. The present model is validated against the published numerical results for vertical wave entry in the absence of currents. Numerical calculations are conducted to analyze the dependence of the free surface elevation and the pressure distribution on the physical parameters, such as current velocity, incident wave amplitude, entry location, heel angle and oblique motion. It is found that the variation of current velocity has obvious effect on both the horizontal velocity of fluid and the wave steepness, which play a major role on free surface and pressure.

Journal

Ocean EngineeringElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off