Numerical investigation of water entry of a wedge into waves with current effects using a fully nonlinear HOBEM

Numerical investigation of water entry of a wedge into waves with current effects using a fully... This paper concerns the hydrodynamic performance of a two-dimensional asymmetric wedge entering waves obliquely with gravity effect in the presence of a uniform current. A time-domain higher-order boundary element method (HOBEM) based on potential theory with fully nonlinear boundary conditions is developed to solve this problem. A stretched coordinate system is adopted in the spatial domain to avoid a large number of elements discretized in fixed computational domain at the initial stage. During mesh regriding and interpolation, a rotation scheme of the stretched coordinate system is employed to meet the requirement of continuity of flux at the intersection points. An auxiliary function is introduced to calculate pressure distribution on body surface. The present model is validated against the published numerical results for vertical wave entry in the absence of currents. Numerical calculations are conducted to analyze the dependence of the free surface elevation and the pressure distribution on the physical parameters, such as current velocity, incident wave amplitude, entry location, heel angle and oblique motion. It is found that the variation of current velocity has obvious effect on both the horizontal velocity of fluid and the wave steepness, which play a major role on free surface and pressure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Engineering Elsevier

Numerical investigation of water entry of a wedge into waves with current effects using a fully nonlinear HOBEM

Loading next page...
 
/lp/elsevier/numerical-investigation-of-water-entry-of-a-wedge-into-waves-with-0Ta3R7lUMW
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0029-8018
eISSN
1873-5258
D.O.I.
10.1016/j.oceaneng.2018.01.092
Publisher site
See Article on Publisher Site

Abstract

This paper concerns the hydrodynamic performance of a two-dimensional asymmetric wedge entering waves obliquely with gravity effect in the presence of a uniform current. A time-domain higher-order boundary element method (HOBEM) based on potential theory with fully nonlinear boundary conditions is developed to solve this problem. A stretched coordinate system is adopted in the spatial domain to avoid a large number of elements discretized in fixed computational domain at the initial stage. During mesh regriding and interpolation, a rotation scheme of the stretched coordinate system is employed to meet the requirement of continuity of flux at the intersection points. An auxiliary function is introduced to calculate pressure distribution on body surface. The present model is validated against the published numerical results for vertical wave entry in the absence of currents. Numerical calculations are conducted to analyze the dependence of the free surface elevation and the pressure distribution on the physical parameters, such as current velocity, incident wave amplitude, entry location, heel angle and oblique motion. It is found that the variation of current velocity has obvious effect on both the horizontal velocity of fluid and the wave steepness, which play a major role on free surface and pressure.

Journal

Ocean EngineeringElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off