Numerical and experimental tests on adhesive bond behaviour in timber-glass walls

Numerical and experimental tests on adhesive bond behaviour in timber-glass walls In order to study the behaviour of a timber-glass wall with an epoxy based adhesive bond under extreme loading conditions, a set of experimental and numerical tests was performed. The experimental part consisted of small-size failure tests, related to an evaluation of the adhesive bond behaviour, as well as of life-size failure test of the timber-glass wall for an evaluation of the performance of the complete composite wall. These experiments were simulated numerically by the nonlinear finite element method, where the adhesive was modelled as a visco-hyperelastic material, and the timber-adhesive adhesion was modelled by a cohesive, elasto-damage traction-separation softening law. The qualitative agreement between the experimental and the numerical results was reasonably good, which indicates that the prediction of the highly nonlinear, inelastic and strain-rate dependent response of the timber-glass walls with an adhesive bond under extreme loading conditions can be estimated reasonably well by the nonlinear finite element method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Adhesion and Adhesives Elsevier

Numerical and experimental tests on adhesive bond behaviour in timber-glass walls

Loading next page...
 
/lp/elsevier/numerical-and-experimental-tests-on-adhesive-bond-behaviour-in-timber-dA72b5NYcw
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0143-7496
D.O.I.
10.1016/j.ijadhadh.2016.06.012
Publisher site
See Article on Publisher Site

Abstract

In order to study the behaviour of a timber-glass wall with an epoxy based adhesive bond under extreme loading conditions, a set of experimental and numerical tests was performed. The experimental part consisted of small-size failure tests, related to an evaluation of the adhesive bond behaviour, as well as of life-size failure test of the timber-glass wall for an evaluation of the performance of the complete composite wall. These experiments were simulated numerically by the nonlinear finite element method, where the adhesive was modelled as a visco-hyperelastic material, and the timber-adhesive adhesion was modelled by a cohesive, elasto-damage traction-separation softening law. The qualitative agreement between the experimental and the numerical results was reasonably good, which indicates that the prediction of the highly nonlinear, inelastic and strain-rate dependent response of the timber-glass walls with an adhesive bond under extreme loading conditions can be estimated reasonably well by the nonlinear finite element method.

Journal

International Journal of Adhesion and AdhesivesElsevier

Published: Oct 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off