Numerical analysis of 1/28 scaled NGNP HTGR reactor building test facility response to depressurization event using GOTHIC

Numerical analysis of 1/28 scaled NGNP HTGR reactor building test facility response to... A depressurized loss of forced cooling (DLOFC) accident is an important type of accident scenario in high temperature gas reactor (HTGR) design, which is initiated by a break in the helium pressure boundary (HPB). This class of accident scenarios results in a depressurization of the primary helium coolant system with the subsequent release of helium into the reactor building (RB) and the atmosphere through vented low pressure containment (VLPC). After the total depressurization of helium, depending on the specific accident scenarios, it is also possible that air enters into the reactor pressure vessel (RPV) through the RB, which can potentially react with fuel and other nuclear-grade graphite components.In this study, generation of thermal hydraulic information in containments (GOTHIC) model of a 1/28-scaled simplified test facility was developed to analyze the depressurization scenarios and validate them against experimental data. Natural leakage from the test facility was modeled using two different methods. The post-depressurization refill of air into the test facility compartments along with two hypothetical depressurization scenarios were analyzed and compared with experimental data. In general, simulation results were observed to be consistent with the experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Nuclear Energy Elsevier

Numerical analysis of 1/28 scaled NGNP HTGR reactor building test facility response to depressurization event using GOTHIC

Loading next page...
 
/lp/elsevier/numerical-analysis-of-1-28-scaled-ngnp-htgr-reactor-building-test-nuZPDg1nVK
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0306-4549
eISSN
1873-2100
D.O.I.
10.1016/j.anucene.2018.04.030
Publisher site
See Article on Publisher Site

Abstract

A depressurized loss of forced cooling (DLOFC) accident is an important type of accident scenario in high temperature gas reactor (HTGR) design, which is initiated by a break in the helium pressure boundary (HPB). This class of accident scenarios results in a depressurization of the primary helium coolant system with the subsequent release of helium into the reactor building (RB) and the atmosphere through vented low pressure containment (VLPC). After the total depressurization of helium, depending on the specific accident scenarios, it is also possible that air enters into the reactor pressure vessel (RPV) through the RB, which can potentially react with fuel and other nuclear-grade graphite components.In this study, generation of thermal hydraulic information in containments (GOTHIC) model of a 1/28-scaled simplified test facility was developed to analyze the depressurization scenarios and validate them against experimental data. Natural leakage from the test facility was modeled using two different methods. The post-depressurization refill of air into the test facility compartments along with two hypothetical depressurization scenarios were analyzed and compared with experimental data. In general, simulation results were observed to be consistent with the experimental data.

Journal

Annals of Nuclear EnergyElsevier

Published: Sep 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off