Nucleation and electrolytic deposition of lead on model carbon electrodes

Nucleation and electrolytic deposition of lead on model carbon electrodes There is a general consensus in the lead acid battery industry for the use of carbon additives as a functional component in the negative paste to boost the battery performance with regards to charge acceptance and cycle life especially for upcoming automotive and energy storage applications. Several mechanisms are discussed in the scientific literature and the affinity of the carbon surfaces to lead species seems to play a key role. With a set of experiments on model carbon electrodes we gave evidence to the fact that some carbon materials promote spontaneous nucleation of lead crystals. We propose a mechanism such that the carbon, as soon as in a lead containing environment, immobilizes some lead on its surface. Such immobilized lead acts as nucleation seed for the deposition of lead when a current is passed through the material. It is therefore possible to differentiate and select the carbon materials based on their ability to form nucleation seeds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Nucleation and electrolytic deposition of lead on model carbon electrodes

Loading next page...
 
/lp/elsevier/nucleation-and-electrolytic-deposition-of-lead-on-model-carbon-bvxc0HJnrE
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.046
Publisher site
See Article on Publisher Site

Abstract

There is a general consensus in the lead acid battery industry for the use of carbon additives as a functional component in the negative paste to boost the battery performance with regards to charge acceptance and cycle life especially for upcoming automotive and energy storage applications. Several mechanisms are discussed in the scientific literature and the affinity of the carbon surfaces to lead species seems to play a key role. With a set of experiments on model carbon electrodes we gave evidence to the fact that some carbon materials promote spontaneous nucleation of lead crystals. We propose a mechanism such that the carbon, as soon as in a lead containing environment, immobilizes some lead on its surface. Such immobilized lead acts as nucleation seed for the deposition of lead when a current is passed through the material. It is therefore possible to differentiate and select the carbon materials based on their ability to form nucleation seeds.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off