Nrf2-ARE signaling provides neuroprotection in traumatic brain injury via modulation of the ubiquitin proteasome system

Nrf2-ARE signaling provides neuroprotection in traumatic brain injury via modulation of the... The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway exhibits protective effects in a variety of neurological diseases. However, the role of this pathway in traumatic brain injury (TBI) is not fully understood. This study investigates whether the Nrf2-ARE pathway provides neuroprotection following TBI via regulation of the ubiquitin proteasome system (UPS), and examines the involvement of this pathway in redox homeostasis. We found that activation the Nrf2-ARE pathway can mitigate secondary brain injury induced by TBI. Furthermore, we found that inhibiting the Nrf2-ARE pathway weakened the UPS following TBI. Treatment of TBI with the proteasome inhibitor, MG132, increased neuronal apoptosis, and evidence of brain water content was found. These data suggest that the Nrf2-ARE pathway provides neuroprotection following TBI via modulation of the UPS. In addition, the results indicated that the content of glutathione (GSH) was significantly increased after activation of Nrf2, and the level of ROS decreased; however, this effect contradictory in the Nrf2 knockout mice. Further studies found that treatment with the ROS agonist, ferric ammonium citrate (FAC), resulted in additional damage exerted by the ubiquitin proteasome pathways, and a significant increase in the amount of ubiquitinated proteins. In contrast, the activity of the ubiquitin proteasome pathways was vastly enhanced, and the level of ubiquitination proteins was significantly decreased following treatment with the inhibitor, N-acetylcysteine (NAC). The above mentioned results were also verified in in vitro experiments. In conclusion, the activation the Nrf2-ARE pathway improves neurological impairment caused by TBI via modulation of the UPS, and the redox homeostasis is one of the vital regulatory mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurochemistry International Elsevier

Nrf2-ARE signaling provides neuroprotection in traumatic brain injury via modulation of the ubiquitin proteasome system

Loading next page...
 
/lp/elsevier/nrf2-are-signaling-provides-neuroprotection-in-traumatic-brain-injury-77zsviXTYz
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0197-0186
D.O.I.
10.1016/j.neuint.2017.04.016
Publisher site
See Article on Publisher Site

Abstract

The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway exhibits protective effects in a variety of neurological diseases. However, the role of this pathway in traumatic brain injury (TBI) is not fully understood. This study investigates whether the Nrf2-ARE pathway provides neuroprotection following TBI via regulation of the ubiquitin proteasome system (UPS), and examines the involvement of this pathway in redox homeostasis. We found that activation the Nrf2-ARE pathway can mitigate secondary brain injury induced by TBI. Furthermore, we found that inhibiting the Nrf2-ARE pathway weakened the UPS following TBI. Treatment of TBI with the proteasome inhibitor, MG132, increased neuronal apoptosis, and evidence of brain water content was found. These data suggest that the Nrf2-ARE pathway provides neuroprotection following TBI via modulation of the UPS. In addition, the results indicated that the content of glutathione (GSH) was significantly increased after activation of Nrf2, and the level of ROS decreased; however, this effect contradictory in the Nrf2 knockout mice. Further studies found that treatment with the ROS agonist, ferric ammonium citrate (FAC), resulted in additional damage exerted by the ubiquitin proteasome pathways, and a significant increase in the amount of ubiquitinated proteins. In contrast, the activity of the ubiquitin proteasome pathways was vastly enhanced, and the level of ubiquitination proteins was significantly decreased following treatment with the inhibitor, N-acetylcysteine (NAC). The above mentioned results were also verified in in vitro experiments. In conclusion, the activation the Nrf2-ARE pathway improves neurological impairment caused by TBI via modulation of the UPS, and the redox homeostasis is one of the vital regulatory mechanisms.

Journal

Neurochemistry InternationalElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off