Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: Opening the black box

Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: Opening the... Baseline biogeochemical surveys of natural environments is an often overlooked field of environmental studies. Too often research begins once contamination has occurred, with a knowledge gap as to how the affected area behaved prior to outside (often anthropogenic) influences. These baseline characterizations can provide insight into proposed bioremediation strategies crucial in cleaning up chemical spill sites or heavily mined regions. Hence, this study was conducted to survey the in-situ microbial activity within freshwater hydrocarbon-rich environments cutting through the McMurray formation - the geologic strata constituting the oil sands. We are the first to report in-situ functional variations among these freshwater microbial ecosystems using metatranscriptomics, providing insight into the in-situ gene expression within these naturally hydrocarbon-rich sites. Key genes involved in energy metabolism (nitrogen, sulfur and methane) and hydrocarbon degradation, including transcripts relating to the observed expression of methane oxidation are reported. This information provides better linkages between hydrocarbon impacted environments, closing knowledge gaps for optimizing not only oil sands mine reclamation but also enhancing microbial reclamation strategies in various freshwater environments. These finding can also be applied to existing contaminated environments, in need of efficient reclamation efforts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: Opening the black box

Loading next page...
 
/lp/elsevier/novel-insights-into-freshwater-hydrocarbon-rich-sediments-using-IqG0swLpFQ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.02.039
Publisher site
See Article on Publisher Site

Abstract

Baseline biogeochemical surveys of natural environments is an often overlooked field of environmental studies. Too often research begins once contamination has occurred, with a knowledge gap as to how the affected area behaved prior to outside (often anthropogenic) influences. These baseline characterizations can provide insight into proposed bioremediation strategies crucial in cleaning up chemical spill sites or heavily mined regions. Hence, this study was conducted to survey the in-situ microbial activity within freshwater hydrocarbon-rich environments cutting through the McMurray formation - the geologic strata constituting the oil sands. We are the first to report in-situ functional variations among these freshwater microbial ecosystems using metatranscriptomics, providing insight into the in-situ gene expression within these naturally hydrocarbon-rich sites. Key genes involved in energy metabolism (nitrogen, sulfur and methane) and hydrocarbon degradation, including transcripts relating to the observed expression of methane oxidation are reported. This information provides better linkages between hydrocarbon impacted environments, closing knowledge gaps for optimizing not only oil sands mine reclamation but also enhancing microbial reclamation strategies in various freshwater environments. These finding can also be applied to existing contaminated environments, in need of efficient reclamation efforts.

Journal

Water ResearchElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off