Noncovalent interactions of bovine α-lactalbumin with green tea polyphenol, epigalocatechin-3-gallate

Noncovalent interactions of bovine α-lactalbumin with green tea polyphenol,... Bovine α-lactalbumin (ALA) is an important Ca-binding protein of milk. Epigallocatechin-3-gallate (EGCG) is the major and the most biologically active catechin of green tea, which has the highest binding affinity to whey proteins due to galloyl functional group. In this study experimental and computational methods were used to investigate noncovalent interactions of EGCG and ALA. Binding affinity of EGCG for ALA, determined by fluorescence quenching analysis, was in the range described for complexes of EGCG and other dietary proteins, and lower than affinity of some phenolic compounds to ALA. Based on circular dichroism and Fourier transform infrared spectroscopy spectra, binding of EGCG change ALA conformation inducing α-helix to β-structures transition. The isothermal titration calorimetry results suggest that the binding of EGCG to ALA is enthalpically favorable. The docking analysis shows that EGCG binds in the hydrophobic pocket at the entrance of cleft between α-helical and β-sheet-rich domains and includes residues of aromatic cluster II. Uptake of ALA by monocytes proceeds at a slower rate in the presence of EGCG suggesting that EGCG binding may impair uptake of ALA by antigen-presenting cells. ALA, being of low cost and widely available protein, can serve as suitable delivery system for EGCG, as well as for food fortification with this bioactive catechin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Hydrocolloids Elsevier

Noncovalent interactions of bovine α-lactalbumin with green tea polyphenol, epigalocatechin-3-gallate

Loading next page...
 
/lp/elsevier/noncovalent-interactions-of-bovine-lactalbumin-with-green-tea-fOBvBzt2do
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0268-005X
eISSN
1873-7137
D.O.I.
10.1016/j.foodhyd.2016.05.012
Publisher site
See Article on Publisher Site

Abstract

Bovine α-lactalbumin (ALA) is an important Ca-binding protein of milk. Epigallocatechin-3-gallate (EGCG) is the major and the most biologically active catechin of green tea, which has the highest binding affinity to whey proteins due to galloyl functional group. In this study experimental and computational methods were used to investigate noncovalent interactions of EGCG and ALA. Binding affinity of EGCG for ALA, determined by fluorescence quenching analysis, was in the range described for complexes of EGCG and other dietary proteins, and lower than affinity of some phenolic compounds to ALA. Based on circular dichroism and Fourier transform infrared spectroscopy spectra, binding of EGCG change ALA conformation inducing α-helix to β-structures transition. The isothermal titration calorimetry results suggest that the binding of EGCG to ALA is enthalpically favorable. The docking analysis shows that EGCG binds in the hydrophobic pocket at the entrance of cleft between α-helical and β-sheet-rich domains and includes residues of aromatic cluster II. Uptake of ALA by monocytes proceeds at a slower rate in the presence of EGCG suggesting that EGCG binding may impair uptake of ALA by antigen-presenting cells. ALA, being of low cost and widely available protein, can serve as suitable delivery system for EGCG, as well as for food fortification with this bioactive catechin.

Journal

Food HydrocolloidsElsevier

Published: Dec 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off