Nitrogen-doped carbon decorated Cu2NiSnS4 microflowers as superior anode materials for long-life lithium-ion batteries

Nitrogen-doped carbon decorated Cu2NiSnS4 microflowers as superior anode materials for long-life... Nitrogen-doped carbon (NC) decorated Cu2NiSnS4 (CNTS) microflower composites (NC@CNTS) were fabricated through a facile solvothermal and pyrrole polymerization with further annealing treatment. The NC@CNTS composites possessed a three-dimension (3D) microflower-like hierarchical structure. The unique microflower structure of NC@CNTS composites exhibited remarkable electrochemical performance as electrode materials for long life lithium ion batteries. The as-prepared composites had a stable and reversible capacity that reached 943 mA h g−1 after 160 cycles at a current rate of 0.1 A g−1. It showed satisfactory cycle stability and rate capability even at 2 A g−1, and specific capacity stabilized at 288 mA g−1 after 1000 cycles. The present facile and cost-effective strategy can be applied for the synthesis of other transition metal sulfide nanomaterials for energy storage and conversion applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Nitrogen-doped carbon decorated Cu2NiSnS4 microflowers as superior anode materials for long-life lithium-ion batteries

Loading next page...
 
/lp/elsevier/nitrogen-doped-carbon-decorated-cu2nisns4-microflowers-as-superior-rQJmMdMpJz
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.02.021
Publisher site
See Article on Publisher Site

Abstract

Nitrogen-doped carbon (NC) decorated Cu2NiSnS4 (CNTS) microflower composites (NC@CNTS) were fabricated through a facile solvothermal and pyrrole polymerization with further annealing treatment. The NC@CNTS composites possessed a three-dimension (3D) microflower-like hierarchical structure. The unique microflower structure of NC@CNTS composites exhibited remarkable electrochemical performance as electrode materials for long life lithium ion batteries. The as-prepared composites had a stable and reversible capacity that reached 943 mA h g−1 after 160 cycles at a current rate of 0.1 A g−1. It showed satisfactory cycle stability and rate capability even at 2 A g−1, and specific capacity stabilized at 288 mA g−1 after 1000 cycles. The present facile and cost-effective strategy can be applied for the synthesis of other transition metal sulfide nanomaterials for energy storage and conversion applications.

Journal

Journal of Solid State ChemistryElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off