New features of hot intraband luminescence for fast timing

New features of hot intraband luminescence for fast timing Intraband luminescence (IBL) is a prompt emission originating from the radiative intraband transitions of charge carriers during thermalisation. Despite its low intensity, IBL can hopefully enhance scintillation time resolution, for instance, in positron emission tomography. The continuous and structureless spectrum of IBL spans over the whole transparency region of a material. Exploiting a wide spectral sensitivity range of our instrumentation (0.77–10.6eV), we have discovered a strong rise of IBL spectral yield in the NIR region in all studied compounds, which could not be explained within the available theoretical models of IBL. We have developed a new model attributing the NIR rise of the IBL spectrum to the phonon-assisted electron transitions within a single parabolic energy band, which yields a fair correspondence to our experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Luminescence Elsevier

New features of hot intraband luminescence for fast timing

Loading next page...
 
/lp/elsevier/new-features-of-hot-intraband-luminescence-for-fast-timing-Oeaa7tzAjj
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0022-2313
eISSN
1872-7883
D.O.I.
10.1016/j.jlumin.2016.03.039
Publisher site
See Article on Publisher Site

Abstract

Intraband luminescence (IBL) is a prompt emission originating from the radiative intraband transitions of charge carriers during thermalisation. Despite its low intensity, IBL can hopefully enhance scintillation time resolution, for instance, in positron emission tomography. The continuous and structureless spectrum of IBL spans over the whole transparency region of a material. Exploiting a wide spectral sensitivity range of our instrumentation (0.77–10.6eV), we have discovered a strong rise of IBL spectral yield in the NIR region in all studied compounds, which could not be explained within the available theoretical models of IBL. We have developed a new model attributing the NIR rise of the IBL spectrum to the phonon-assisted electron transitions within a single parabolic energy band, which yields a fair correspondence to our experimental data.

Journal

Journal of LuminescenceElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off