Neuroketotherapeutics: A modern review of a century-old therapy

Neuroketotherapeutics: A modern review of a century-old therapy Neuroketotherapeutics represent a class of bioenergetic medicine therapies that feature the induction of ketosis. These therapies include medium-chain triglyceride supplements, ketone esters, fasting, strenuous exercise, the modified Atkins diet, and the classic ketogenic diet. Extended experience reveals persons with epilepsy, especially pediatric epilepsy, benefit from ketogenic diets although the mechanisms that underlie its effects remain unclear. Data indicate ketotherapeutics enhance mitochondrial respiration, promote neuronal long-term potentiation, increase BDNF expression, increase GPR signaling, attenuate oxidative stress, reduce inflammation, and alter protein post-translational modifications via lysine acetylation and β-hydroxybutyrylation. These properties have further downstream implications involving Akt, PLCγ, CREB, Sirtuin, and mTORC pathways. Further studies of neuroketotherapeutics will enhance our understanding of ketone body molecular biology, and reveal novel central nervous system therapeutic applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurochemistry International Elsevier

Neuroketotherapeutics: A modern review of a century-old therapy

Loading next page...
 
/lp/elsevier/neuroketotherapeutics-a-modern-review-of-a-century-old-therapy-boeB4yXiuq
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0197-0186
D.O.I.
10.1016/j.neuint.2017.05.019
Publisher site
See Article on Publisher Site

Abstract

Neuroketotherapeutics represent a class of bioenergetic medicine therapies that feature the induction of ketosis. These therapies include medium-chain triglyceride supplements, ketone esters, fasting, strenuous exercise, the modified Atkins diet, and the classic ketogenic diet. Extended experience reveals persons with epilepsy, especially pediatric epilepsy, benefit from ketogenic diets although the mechanisms that underlie its effects remain unclear. Data indicate ketotherapeutics enhance mitochondrial respiration, promote neuronal long-term potentiation, increase BDNF expression, increase GPR signaling, attenuate oxidative stress, reduce inflammation, and alter protein post-translational modifications via lysine acetylation and β-hydroxybutyrylation. These properties have further downstream implications involving Akt, PLCγ, CREB, Sirtuin, and mTORC pathways. Further studies of neuroketotherapeutics will enhance our understanding of ketone body molecular biology, and reveal novel central nervous system therapeutic applications.

Journal

Neurochemistry InternationalElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off