Nervous system development and disease: A focus on trithorax related proteins and chromatin remodelers

Nervous system development and disease: A focus on trithorax related proteins and chromatin... The nervous system comprises many different cell types including neurons, glia, macrophages, and immune cells, each of which is defined by specific patterns of gene expression, morphology, function, and anatomical location. Establishment of these complex and highly regulated cell fates requires spatial and temporal coordination of gene transcription. Open chromatin (euchromatin) allows transcription factors to interact with gene promoters and activate lineage specific genes, whereas closed chromatin (heterochromatin) remains inaccessible to transcriptional activation. Changes in the genome-wide distribution of euchromatin accompany transcriptional plasticity that allows the diversity of mature cell fates to be generated during development. In the past 20years, many new genes and gene families have been identified to participate in regulation of chromatin accessibility. These genes include chromatin remodelers that interact with Trithorax group (TrxG) and Polycomb group (PcG) proteins to activate or repress transcription, respectively. Here we review the role of TrxG proteins in neurodevelopment and disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular and Cellular Neuroscience Elsevier

Nervous system development and disease: A focus on trithorax related proteins and chromatin remodelers

Loading next page...
 
/lp/elsevier/nervous-system-development-and-disease-a-focus-on-trithorax-related-kwNgIkX6N9
Publisher
Academic Press
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
1044-7431
D.O.I.
10.1016/j.mcn.2017.11.016
Publisher site
See Article on Publisher Site

Abstract

The nervous system comprises many different cell types including neurons, glia, macrophages, and immune cells, each of which is defined by specific patterns of gene expression, morphology, function, and anatomical location. Establishment of these complex and highly regulated cell fates requires spatial and temporal coordination of gene transcription. Open chromatin (euchromatin) allows transcription factors to interact with gene promoters and activate lineage specific genes, whereas closed chromatin (heterochromatin) remains inaccessible to transcriptional activation. Changes in the genome-wide distribution of euchromatin accompany transcriptional plasticity that allows the diversity of mature cell fates to be generated during development. In the past 20years, many new genes and gene families have been identified to participate in regulation of chromatin accessibility. These genes include chromatin remodelers that interact with Trithorax group (TrxG) and Polycomb group (PcG) proteins to activate or repress transcription, respectively. Here we review the role of TrxG proteins in neurodevelopment and disease.

Journal

Molecular and Cellular NeuroscienceElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off