Neptunium(V) sorption to vadose zone sediments: Reversible, not readily reducible, and predictable based on Fe-oxide content

Neptunium(V) sorption to vadose zone sediments: Reversible, not readily reducible, and... Neptunium (Np) is among the key risk-drivers at the Savannah River Site's (SRS) low-level waste disposal facility located in South Carolina. A series of studies were undertaken to identify and to model the key geochemical processes controlling Np sorption to SRS vadose zone sediments. The approach was to conduct Np(V) laboratory batch and flow studies using two sediments representing end-member depositional facies recovered beneath the disposal facility. Baseline distribution coefficients (Kd values; Np concentration ratio of sediment:porewater) were 9.05 ± 0.61 L kg−1 and 4.26 ± 0.24 L kg−1 for the clayey and sandy end-member sediments, respectively. The addition of natural organic matter (NOM) to the sediment resulted in only a two fold increase in the Kd values, most likely due to the formation of ternary sediment-NOM-Np complexes. None of the reduction treatments (ascorbic acid, dithionite, zero valent iron, hydrogen peroxide, and anaerobic atmosphere), including some long-term (71-day) equilibration experiments, resulted in significant increases in Kd values. This indicated that little to no reduction of Np(V) to the more strongly sorbing Np(IV) occurred. Among the key novel findings in this research was that batch desorption tests and stop-flow stir-cell kinetic experiments indicated that the Np(V) sorption was completely reversible. These observations were used to develop a simple conceptual model describing Np(V) sorption. The conceptual model described NpO2+ reversibly complexation to iron oxide coatings on the sediments. The model was successfully applied without any adjustable parameters to an independent set of experimental data, requiring only the dithionite-extractable Fe concentration from the independent dataset. There is no standard approach for quantifying reactive sorption site concentrations on composite materials (e.g., soils and sediments). In this study we proposed such a method based on an operationally defined fraction of the extractable iron. This parameterization approach was calibrated with two sediments then used to blindly and successfully predict sorption on another end-member soil. The successful modeling approach taken in this work 1) identified key reactions that are or are not influencing the system to develop a simple but appropriate conceptual model and 2) calibrated the fraction of extractable iron required for surface site density determination and used the calibrated model for blind predictions. This modeling approach could be used for other composite materials to allow for comparisons of the fraction of surface reactive extractable metals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemical Geology Elsevier

Neptunium(V) sorption to vadose zone sediments: Reversible, not readily reducible, and predictable based on Fe-oxide content

Loading next page...
 
/lp/elsevier/neptunium-v-sorption-to-vadose-zone-sediments-reversible-not-readily-zd0TBomcI0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0009-2541
eISSN
1872-6836
D.O.I.
10.1016/j.chemgeo.2018.01.026
Publisher site
See Article on Publisher Site

Abstract

Neptunium (Np) is among the key risk-drivers at the Savannah River Site's (SRS) low-level waste disposal facility located in South Carolina. A series of studies were undertaken to identify and to model the key geochemical processes controlling Np sorption to SRS vadose zone sediments. The approach was to conduct Np(V) laboratory batch and flow studies using two sediments representing end-member depositional facies recovered beneath the disposal facility. Baseline distribution coefficients (Kd values; Np concentration ratio of sediment:porewater) were 9.05 ± 0.61 L kg−1 and 4.26 ± 0.24 L kg−1 for the clayey and sandy end-member sediments, respectively. The addition of natural organic matter (NOM) to the sediment resulted in only a two fold increase in the Kd values, most likely due to the formation of ternary sediment-NOM-Np complexes. None of the reduction treatments (ascorbic acid, dithionite, zero valent iron, hydrogen peroxide, and anaerobic atmosphere), including some long-term (71-day) equilibration experiments, resulted in significant increases in Kd values. This indicated that little to no reduction of Np(V) to the more strongly sorbing Np(IV) occurred. Among the key novel findings in this research was that batch desorption tests and stop-flow stir-cell kinetic experiments indicated that the Np(V) sorption was completely reversible. These observations were used to develop a simple conceptual model describing Np(V) sorption. The conceptual model described NpO2+ reversibly complexation to iron oxide coatings on the sediments. The model was successfully applied without any adjustable parameters to an independent set of experimental data, requiring only the dithionite-extractable Fe concentration from the independent dataset. There is no standard approach for quantifying reactive sorption site concentrations on composite materials (e.g., soils and sediments). In this study we proposed such a method based on an operationally defined fraction of the extractable iron. This parameterization approach was calibrated with two sediments then used to blindly and successfully predict sorption on another end-member soil. The successful modeling approach taken in this work 1) identified key reactions that are or are not influencing the system to develop a simple but appropriate conceptual model and 2) calibrated the fraction of extractable iron required for surface site density determination and used the calibrated model for blind predictions. This modeling approach could be used for other composite materials to allow for comparisons of the fraction of surface reactive extractable metals.

Journal

Chemical GeologyElsevier

Published: Mar 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off