Necessary and sufficient conditions for Pareto optimality of the stochastic systems in finite horizon

Necessary and sufficient conditions for Pareto optimality of the stochastic systems in finite... This paper is concerned with the necessary and sufficient conditions for the Pareto optimality in the finite horizon stochastic cooperative differential game. Based on the necessary and sufficient characterization of the Pareto optimality, the problem is transformed into a set of constrained stochastic optimal control problems with a special structure. Utilizing the stochastic Pontryagin minimum principle, the necessary conditions for the existence of the Pareto solutions are put forward. Under certain convex assumptions, it is shown that the necessary conditions are also sufficient ones. Next, we study the indefinite linear quadratic (LQ) case. It is pointed out that the solvability of the related generalized differential Riccati equation (GDRE) provides the sufficient condition under which all Pareto efficient strategies can be obtained by the weighted sum optimality method. Two examples shed light on the effectiveness of theoretical results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automatica Elsevier

Necessary and sufficient conditions for Pareto optimality of the stochastic systems in finite horizon

Loading next page...
 
/lp/elsevier/necessary-and-sufficient-conditions-for-pareto-optimality-of-the-CAHw46Jee4
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0005-1098
D.O.I.
10.1016/j.automatica.2018.04.044
Publisher site
See Article on Publisher Site

Abstract

This paper is concerned with the necessary and sufficient conditions for the Pareto optimality in the finite horizon stochastic cooperative differential game. Based on the necessary and sufficient characterization of the Pareto optimality, the problem is transformed into a set of constrained stochastic optimal control problems with a special structure. Utilizing the stochastic Pontryagin minimum principle, the necessary conditions for the existence of the Pareto solutions are put forward. Under certain convex assumptions, it is shown that the necessary conditions are also sufficient ones. Next, we study the indefinite linear quadratic (LQ) case. It is pointed out that the solvability of the related generalized differential Riccati equation (GDRE) provides the sufficient condition under which all Pareto efficient strategies can be obtained by the weighted sum optimality method. Two examples shed light on the effectiveness of theoretical results.

Journal

AutomaticaElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off