Na3V2O2(PO4)2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries

Na3V2O2(PO4)2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous... NASICON-type structured Na3V2O2(PO4)2F nanocubes with multi-wall carbon nanotubes (MWCNTs) composite has been synthesized by ethylene glycol-assisted hydrothermal reaction and used as a rechargeable non-aqueous and aqueous sodium-ion battery cathode material. As a cathode material for non-aqueous sodium-ion batteries, as-synthesized Na3V2O2(PO4)2F-MWCNT composite shows stable capacity of 98 mAh g−1 at 0.1 C for 120 cycles and 60 mAh g−1 at 2 C for 1800 cycles in half-cell and full-cell configurations, respectively. In aqueous electrolytes, Na3V2O2(PO4)2F-MWCNT composite delivers discharge capacity of 35 mAh g−1 at 1 C rate in half-cell and 42 mAh g−1 at 1 C rate in full-cell with NaTi2(PO4)3-MWCNT as an anode. Stable cyclability and high rate performance of Na3V2O2(PO4)2F-MWCNT nanocomposite can be attributed to the very short sodium ion diffusion length in nano cube morphology of Na3V2O2(PO4)2F as well as the carbon nanotubes matrix which endows the unbreakable conductive networks for electrons and Na+ ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

Na3V2O2(PO4)2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries

Loading next page...
 
/lp/elsevier/na3v2o2-po4-2f-mwcnt-nanocomposites-as-a-stable-and-high-rate-cathode-NZ2uYXGitl
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.096
Publisher site
See Article on Publisher Site

Abstract

NASICON-type structured Na3V2O2(PO4)2F nanocubes with multi-wall carbon nanotubes (MWCNTs) composite has been synthesized by ethylene glycol-assisted hydrothermal reaction and used as a rechargeable non-aqueous and aqueous sodium-ion battery cathode material. As a cathode material for non-aqueous sodium-ion batteries, as-synthesized Na3V2O2(PO4)2F-MWCNT composite shows stable capacity of 98 mAh g−1 at 0.1 C for 120 cycles and 60 mAh g−1 at 2 C for 1800 cycles in half-cell and full-cell configurations, respectively. In aqueous electrolytes, Na3V2O2(PO4)2F-MWCNT composite delivers discharge capacity of 35 mAh g−1 at 1 C rate in half-cell and 42 mAh g−1 at 1 C rate in full-cell with NaTi2(PO4)3-MWCNT as an anode. Stable cyclability and high rate performance of Na3V2O2(PO4)2F-MWCNT nanocomposite can be attributed to the very short sodium ion diffusion length in nano cube morphology of Na3V2O2(PO4)2F as well as the carbon nanotubes matrix which endows the unbreakable conductive networks for electrons and Na+ ions.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off