N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies

N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies The N-linked glycan profiles on recombinant monoclonal antibody therapeutics significantly affect antibody biological functions and are largely determined by host cell genotypes and culture conditions. A key step in bioprocess development for monoclonal antibodies (mAbs) involves optimization and control of N-glycan profiles. With pressure from pricing and biosimilars looming, more efficient and effective approaches are sought in the field of glycoengineering. Metabolic studies and mathematical modeling are two such approaches that optimize bioprocesses by better understanding and predicting glycosylation. In this review, we summarize a group of strategies currently used for glycan profile modulation and control. Metabolic analysis and mathematical modeling are then explored with an emphasis on how these two techniques can be utilized to advance glycoengineering. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Trends in Biotechnology Elsevier

N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies

Loading next page...
 
/lp/elsevier/n-glycosylation-design-and-control-of-therapeutic-monoclonal-eDD8Gc1U9T
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0167-7799
D.O.I.
10.1016/j.tibtech.2016.02.013
Publisher site
See Article on Publisher Site

Abstract

The N-linked glycan profiles on recombinant monoclonal antibody therapeutics significantly affect antibody biological functions and are largely determined by host cell genotypes and culture conditions. A key step in bioprocess development for monoclonal antibodies (mAbs) involves optimization and control of N-glycan profiles. With pressure from pricing and biosimilars looming, more efficient and effective approaches are sought in the field of glycoengineering. Metabolic studies and mathematical modeling are two such approaches that optimize bioprocesses by better understanding and predicting glycosylation. In this review, we summarize a group of strategies currently used for glycan profile modulation and control. Metabolic analysis and mathematical modeling are then explored with an emphasis on how these two techniques can be utilized to advance glycoengineering.

Journal

Trends in BiotechnologyElsevier

Published: Oct 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off