N and p-type properties in organo-metal halide perovskites studied by Seebeck effects

N and p-type properties in organo-metal halide perovskites studied by Seebeck effects Organo-metal halide perovskites can exhibit co-existed electrical polarizations and semiconducting properties respectively from organic and inorganic components. Here, we find that the Seebeck coefficient can be changed between positive and negative values when the concentration of chloride ions is varied between single-halide (CH3NH3PbI3) and mixed-halide structures (CH3NH3PbIxCl3−x). This indicates that varying the concentration of chloride ions can tune the semiconducting properties between the n-type and p-type regimes in the organo-metal halide perovskites. Our temperature-dependent capacitance measurement shows that increasing temperature can cause a change on internal electrical polarization. As a result, we can propose that the internal polarization functions as the underlying mechanism responsible for large temperature-dependent Seebeck coefficients in organo-metal halide perovskites operating between n-type and p-type regimes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

N and p-type properties in organo-metal halide perovskites studied by Seebeck effects

Loading next page...
 
/lp/elsevier/n-and-p-type-properties-in-organo-metal-halide-perovskites-studied-by-J4uW0JWAmf
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.05.025
Publisher site
See Article on Publisher Site

Abstract

Organo-metal halide perovskites can exhibit co-existed electrical polarizations and semiconducting properties respectively from organic and inorganic components. Here, we find that the Seebeck coefficient can be changed between positive and negative values when the concentration of chloride ions is varied between single-halide (CH3NH3PbI3) and mixed-halide structures (CH3NH3PbIxCl3−x). This indicates that varying the concentration of chloride ions can tune the semiconducting properties between the n-type and p-type regimes in the organo-metal halide perovskites. Our temperature-dependent capacitance measurement shows that increasing temperature can cause a change on internal electrical polarization. As a result, we can propose that the internal polarization functions as the underlying mechanism responsible for large temperature-dependent Seebeck coefficients in organo-metal halide perovskites operating between n-type and p-type regimes.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial