Mutations that suppress the thermosensitivity of green fluorescent protein

Mutations that suppress the thermosensitivity of green fluorescent protein Background The green fluorescent protein (GFP) of the jellyfish Aequorea victoria has recently attracted great interest as the first example of a cloned reporter protein that is intrinsically fluorescent. Although successful in some organisms, heterologous expression of GFP has not always been straight forward. In particular, expression of GFP in cells that require incubation temperatures around 37°C has been problematic. Results We have carried out a screen for mutant forms of GFP that fluoresce more intensely than the wild-type protein when expressed in E. coli at 37°C. We have characterized a bright mutant (GFPA) with reduced sensitivity to temperature in both bacteria and yeast, and have shown that the amino acids substituted in GFPA act by preventing temperature-dependent misfolding of the GFP apoprotein. We have shown that the excitation and emission spectra of GFPA can be manipulated by site-directed mutagenesis without disturbing its improved folding characteristics, and have produced a thermostable folding mutant (GFP5) that can be efficiently excited using either long-wavelength ultraviolet or blue light. Expression of GFP5 results in greatly improved levels of fluorescence in both microbial and mammalian cells cultured at 37°C. Conclusions The thermotolerant mutants of GFP greatly improve the sensitivity of the protein as a visible reporter molecule in bacterial, yeast and mammalian cells. The fluorescence spectra of these mutants can be manipulated by further mutagenesis without deleteriously affecting their improved folding characteristics, so it may be possible to engineer a range of spectral variants with improved tolerance to temperature. Such a range of sensitive reporter proteins will greatly improve the prospects for GFP-based applications in cells that require relatively high incubation temperatures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Biology Elsevier

Mutations that suppress the thermosensitivity of green fluorescent protein

Loading next page...
 
/lp/elsevier/mutations-that-suppress-the-thermosensitivity-of-green-fluorescent-ivMA6EwKqh
Publisher
Elsevier
Copyright
Copyright © 1996 Elsevier Science Ltd
ISSN
0960-9822
DOI
10.1016/S0960-9822(02)70789-6
Publisher site
See Article on Publisher Site

Abstract

Background The green fluorescent protein (GFP) of the jellyfish Aequorea victoria has recently attracted great interest as the first example of a cloned reporter protein that is intrinsically fluorescent. Although successful in some organisms, heterologous expression of GFP has not always been straight forward. In particular, expression of GFP in cells that require incubation temperatures around 37°C has been problematic. Results We have carried out a screen for mutant forms of GFP that fluoresce more intensely than the wild-type protein when expressed in E. coli at 37°C. We have characterized a bright mutant (GFPA) with reduced sensitivity to temperature in both bacteria and yeast, and have shown that the amino acids substituted in GFPA act by preventing temperature-dependent misfolding of the GFP apoprotein. We have shown that the excitation and emission spectra of GFPA can be manipulated by site-directed mutagenesis without disturbing its improved folding characteristics, and have produced a thermostable folding mutant (GFP5) that can be efficiently excited using either long-wavelength ultraviolet or blue light. Expression of GFP5 results in greatly improved levels of fluorescence in both microbial and mammalian cells cultured at 37°C. Conclusions The thermotolerant mutants of GFP greatly improve the sensitivity of the protein as a visible reporter molecule in bacterial, yeast and mammalian cells. The fluorescence spectra of these mutants can be manipulated by further mutagenesis without deleteriously affecting their improved folding characteristics, so it may be possible to engineer a range of spectral variants with improved tolerance to temperature. Such a range of sensitive reporter proteins will greatly improve the prospects for GFP-based applications in cells that require relatively high incubation temperatures.

Journal

Current BiologyElsevier

Published: Dec 1, 1996

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off