Municipal wastewater effluent characterization and variability analysis in view of an ozone dose control strategy during tertiary treatment: The status in Belgium

Municipal wastewater effluent characterization and variability analysis in view of an ozone dose... Ozonation is known for removing trace organic contaminants (TrOCs) from secondary wastewater effluent. However, its implementation and overall efficiency on a broad scale depends on effluent characteristics, which can differ both in time as well as between different treatment plants (nowadays referred to as water resource recovery facilities (WRRFs)). Therefore, water quality was assessed over time at 15 different Belgian sampling locations to increase the understanding of effluent variability in view of online control of the tertiary ozonation step. Conventional and surrogate parameters as well as those specifically related to tertiary ozonation (e.g. instantaneous ozone demand) were assessed. Little differences between the different locations were found for spectral measurements (e.g. UVA254 or fluorescence). The small amount of observed outliers was clearly site or event dependent. A lower variability (for spectral measurements) is advantageous in simplifying the development and application of a generic control framework based on these spectral measurements. In addition, also variations in TrOC concentration levels seemed to be small, as the concentration of most individual compounds resided within one order of magnitude over multiple sampling events at two different WRRFs. The combination of this low variability in TrOC levels in the effluent before ozonation with a control strategy using a TrOC removal efficiency set-point, allows to indicatively assess absolute TrOC levels after ozonation. In contrast, significant variations between different plants (especially smaller sized plants) were observed and could be related to the conventional water quality parameters alkalinity (correlated with the electrical conductivity) and pH which are both known to have an influence on the ozonation process. This confirms that a differential dosing control strategy (i.e. accounting for the matrix reactivity) should be applied instead of one solely based on the (organic) effluent load before ozonation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Municipal wastewater effluent characterization and variability analysis in view of an ozone dose control strategy during tertiary treatment: The status in Belgium

Loading next page...
 
/lp/elsevier/municipal-wastewater-effluent-characterization-and-variability-OWBZea0lxg
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.032
Publisher site
See Article on Publisher Site

Abstract

Ozonation is known for removing trace organic contaminants (TrOCs) from secondary wastewater effluent. However, its implementation and overall efficiency on a broad scale depends on effluent characteristics, which can differ both in time as well as between different treatment plants (nowadays referred to as water resource recovery facilities (WRRFs)). Therefore, water quality was assessed over time at 15 different Belgian sampling locations to increase the understanding of effluent variability in view of online control of the tertiary ozonation step. Conventional and surrogate parameters as well as those specifically related to tertiary ozonation (e.g. instantaneous ozone demand) were assessed. Little differences between the different locations were found for spectral measurements (e.g. UVA254 or fluorescence). The small amount of observed outliers was clearly site or event dependent. A lower variability (for spectral measurements) is advantageous in simplifying the development and application of a generic control framework based on these spectral measurements. In addition, also variations in TrOC concentration levels seemed to be small, as the concentration of most individual compounds resided within one order of magnitude over multiple sampling events at two different WRRFs. The combination of this low variability in TrOC levels in the effluent before ozonation with a control strategy using a TrOC removal efficiency set-point, allows to indicatively assess absolute TrOC levels after ozonation. In contrast, significant variations between different plants (especially smaller sized plants) were observed and could be related to the conventional water quality parameters alkalinity (correlated with the electrical conductivity) and pH which are both known to have an influence on the ozonation process. This confirms that a differential dosing control strategy (i.e. accounting for the matrix reactivity) should be applied instead of one solely based on the (organic) effluent load before ozonation.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off