Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands

Multivariate indicator Kriging approach using a GIS to classify soil degradation for... Land evaluation is sensitive to the effects of variability of ecologically complex phenomena. A probability map incorporating some of these phenomena is proposed to account for local uncertainty of areas affected by soil degradation in the Apennines of south Italy. To be useful, a method for assessing soil degradation should integrate several kinds of data. We present here an overview of the geostatistical approach to solving this problem: non-linear estimation. The following factors have been considered: the soil erosion by water (geomorphologic indicator), the station aridity (bioclimate indicator), and top-soil depth (pedologic indicator). We convert the continuous data values of each variable at each location using a binary variable indicator transform based on critical thresholds. The indicator transform values for individual variables are then integrated to form multiple variable indicator transform (MVIT) to evaluate the degree of soil degradation. Areas suited to soil degradation maps delineated by geographical information system (GIS), showed that the joint probabilities of meeting specific criteria indicator Kriging were influenced by the critical threshold values used to transform each individual variable and the method of integration. So, the understanding of soil vulnerability to degradation is increased to providing a way to classify degraded regions. On the basis of this information different land uses strategies could be identified to develop sustainable assessment models of soils. For example, many countries of these disadvantaged areas, should have agro-forestation programmes that increase the heterogeneity in vegetation cover contrasting hydrological properties, thus promoting a self-regulating system for runoff and erosional soil degradation control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Indicators Elsevier

Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands

Loading next page...
 
/lp/elsevier/multivariate-indicator-kriging-approach-using-a-gis-to-classify-soil-3rWWCRM4pF
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ltd
ISSN
1470-160x
D.O.I.
10.1016/j.ecolind.2004.03.002
Publisher site
See Article on Publisher Site

Abstract

Land evaluation is sensitive to the effects of variability of ecologically complex phenomena. A probability map incorporating some of these phenomena is proposed to account for local uncertainty of areas affected by soil degradation in the Apennines of south Italy. To be useful, a method for assessing soil degradation should integrate several kinds of data. We present here an overview of the geostatistical approach to solving this problem: non-linear estimation. The following factors have been considered: the soil erosion by water (geomorphologic indicator), the station aridity (bioclimate indicator), and top-soil depth (pedologic indicator). We convert the continuous data values of each variable at each location using a binary variable indicator transform based on critical thresholds. The indicator transform values for individual variables are then integrated to form multiple variable indicator transform (MVIT) to evaluate the degree of soil degradation. Areas suited to soil degradation maps delineated by geographical information system (GIS), showed that the joint probabilities of meeting specific criteria indicator Kriging were influenced by the critical threshold values used to transform each individual variable and the method of integration. So, the understanding of soil vulnerability to degradation is increased to providing a way to classify degraded regions. On the basis of this information different land uses strategies could be identified to develop sustainable assessment models of soils. For example, many countries of these disadvantaged areas, should have agro-forestation programmes that increase the heterogeneity in vegetation cover contrasting hydrological properties, thus promoting a self-regulating system for runoff and erosional soil degradation control.

Journal

Ecological IndicatorsElsevier

Published: Sep 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off