Multiscale investigation of micro-scale stresses at composite laminate free edge

Multiscale investigation of micro-scale stresses at composite laminate free edge The free edge effect is well understood at the laminate and lamina scale. The influence of the microstructure on micro-scale stresses and free edge cracking, however, is less known. This work aims at a better understanding of the effect of microscopic features on micro-scale stresses and the tendency of initial micro-cracking at the laminate free edge. To this end, a two-scale finite element (FE) modelling approach is developed. It consists of a meso-scale model to capture the laminate stacking sequence and the global stress field under a given loading condition, and a micro-scale model to predict the local constituent level stresses at the free edge. The two models were coupled one-way through a strain localization rule. A procedure to determine the boundary conditions for micro-scale FE models containing a free edge was proposed. The model was used to examine the 90/90 interface in [25N/−25N/90N]S IM7/8552 carbon/epoxy composite laminates. The effects of thermal and tensile loading were investigated independently to understand the influence of the interlaminar microstructure on micro-scale stresses at free edges during manufacture and under mechanical loading. The results agreed with the trend of free edge pre-cracks and progressive damage observed in experiments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Multiscale investigation of micro-scale stresses at composite laminate free edge

Loading next page...
 
/lp/elsevier/multiscale-investigation-of-micro-scale-stresses-at-composite-laminate-jPmf9G1ES2
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2018.01.098
Publisher site
See Article on Publisher Site

Abstract

The free edge effect is well understood at the laminate and lamina scale. The influence of the microstructure on micro-scale stresses and free edge cracking, however, is less known. This work aims at a better understanding of the effect of microscopic features on micro-scale stresses and the tendency of initial micro-cracking at the laminate free edge. To this end, a two-scale finite element (FE) modelling approach is developed. It consists of a meso-scale model to capture the laminate stacking sequence and the global stress field under a given loading condition, and a micro-scale model to predict the local constituent level stresses at the free edge. The two models were coupled one-way through a strain localization rule. A procedure to determine the boundary conditions for micro-scale FE models containing a free edge was proposed. The model was used to examine the 90/90 interface in [25N/−25N/90N]S IM7/8552 carbon/epoxy composite laminates. The effects of thermal and tensile loading were investigated independently to understand the influence of the interlaminar microstructure on micro-scale stresses at free edges during manufacture and under mechanical loading. The results agreed with the trend of free edge pre-cracks and progressive damage observed in experiments.

Journal

Composite StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off