Multiple point statistical simulation using uncertain (soft) conditional data

Multiple point statistical simulation using uncertain (soft) conditional data Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computers & Geosciences Elsevier

Multiple point statistical simulation using uncertain (soft) conditional data

Loading next page...
 
/lp/elsevier/multiple-point-statistical-simulation-using-uncertain-soft-conditional-XMOmbx0oGH
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0098-3004
eISSN
1873-7803
D.O.I.
10.1016/j.cageo.2018.01.017
Publisher site
See Article on Publisher Site

Abstract

Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model.

Journal

Computers & GeosciencesElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial